Journal of Flow Chemistry最新文献

筛选
英文 中文
Rapid prototyping of a modular optical flow cell for image-based droplet size measurements in emulsification processes 用于乳化过程中基于图像的液滴粒度测量的模块化光学流动池的快速原型开发
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-03-19 DOI: 10.1007/s41981-024-00323-2
Inga Burke, Christina Assies, Norbert Kockmann
{"title":"Rapid prototyping of a modular optical flow cell for image-based droplet size measurements in emulsification processes","authors":"Inga Burke, Christina Assies, Norbert Kockmann","doi":"10.1007/s41981-024-00323-2","DOIUrl":"https://doi.org/10.1007/s41981-024-00323-2","url":null,"abstract":"<p>Emulsification processes are often found in the process industry and their evaluation is crucial for product quality and safety. Numerous methods exist to analyze critical quality attributes (CQA) such as the droplet sizes and droplet size distribution (DSD) of an emulsification process. During the emulsification process, the optical process accessibility may be limited due to high disperse phase content of liquid-liquid systems. To overcome this challenge, a modular, optical measurement flow cell is presented to widen the application window of optical methods in emulsification processes. In this contribution, the channel geometry is subject of optimization to modify the flow characteristics and produce high optical quality. In terms of rapid prototyping, an iterative optimization procedure via SLA-3D printing was used to increase operability. The results demonstrated that the flow cell resulting from the optimization procedure provides a broad observation window for droplet detection.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Investigators in Flow Chemistry 2023 2023 年流动化学领域的新兴研究人员
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-03-18 DOI: 10.1007/s41981-024-00322-3
Cecilia Bottecchia, Wu Jie, Luca Capaldo
{"title":"Emerging Investigators in Flow Chemistry 2023","authors":"Cecilia Bottecchia, Wu Jie, Luca Capaldo","doi":"10.1007/s41981-024-00322-3","DOIUrl":"https://doi.org/10.1007/s41981-024-00322-3","url":null,"abstract":"","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of micromixing times in commercially available continuous-flow mixers: evaluation of the incorporation and interaction by exchange with the mean model 确定市售连续流动混合器的微混合时间:通过与平均模型交换来评估混合和相互作用
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-03-06 DOI: 10.1007/s41981-024-00321-4
Jasper H. A. Schuurmans, Micha Peeters, Matthieu Dorbec, Koen P. L. Kuijpers
{"title":"Determination of micromixing times in commercially available continuous-flow mixers: evaluation of the incorporation and interaction by exchange with the mean model","authors":"Jasper H. A. Schuurmans, Micha Peeters, Matthieu Dorbec, Koen P. L. Kuijpers","doi":"10.1007/s41981-024-00321-4","DOIUrl":"https://doi.org/10.1007/s41981-024-00321-4","url":null,"abstract":"<p>To understand and predict the effect of mixing in a mixer or reactor, characterization is essential. The Villermaux-Dushman system of competitive parallel reactions is one of the most frequently used methods to obtain details on the micromixing behavior in mixers and reactors. For quantitative information, a model can convert experimental data into a universal micromixing time, which can be used to compare set-ups and reaction conditions. Different modeling approaches have been developed over time and complicate the comparison of results with newfound micromixing times. In this work, these different modeling approaches are elaborated upon to show the significant differences that can arise between these models. Special attention goes out to a model for continuous-flow mixers, which operates differently and has different characteristics compared to mixing in conventional batch reactors. The volume fractions of the two phases being mixed are generally closer to one another in flow mixers, requiring adaptations in the experimental and modeling approach. Several models were tested, after which the interaction by exchange with the mean (IEM) model was selected. Using this model, micromixing times were determined for a variety of continuous-flow mixers under different operating conditions.</p>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Access semi-stabilized and unstabilized diazo compounds using iodosylbenzene 利用碘代苯获得半稳定和非稳定重氮化合物
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-02-29 DOI: 10.1007/s41981-024-00320-5
Laurent Vinet, Emmanuelle M. D. Allouche, Vanessa Kairouz, André B. Charette
{"title":"Access semi-stabilized and unstabilized diazo compounds using iodosylbenzene","authors":"Laurent Vinet, Emmanuelle M. D. Allouche, Vanessa Kairouz, André B. Charette","doi":"10.1007/s41981-024-00320-5","DOIUrl":"https://doi.org/10.1007/s41981-024-00320-5","url":null,"abstract":"<p>Continuous flow chemistry has become the method of choice for the synthesis of toxic and explosive intermediates such as diazo reagents because they can be generated on demand and readily used, eliminating the need to handle hazardous materials. This inherent increase in safety makes it more feasible to use these reagents in day-to-day synthesis. Herein, we describe a continuous flow, metal-free, easy-to-use method for the preparation of semi-stabilized and unstabilized diazo reagents. The scope of the described continuous flow oxidation of hydrazones using a packed bed column with iodosylbenzene includes 13 semi-stabilized and 13 unstabilized diazo reagents in solution in dichloromethane while producing only 1 equivalent of water and iodobenzene as by-products. These otherwise difficult to access compounds are further reacted either in situ or at the reactor outlet to yield esters and ethers in good to excellent yields (47–96%).</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-printed open-source sensor flow cells for microfluidic temperature, electrical conductivity, and pH value determination 用于测定微流控温度、电导率和 pH 值的 3D 打印开源传感器流动池
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-02-28 DOI: 10.1007/s41981-024-00319-y
Robin Dinter, Lennart Helwes, Stijn de Vries, Kausik Jegatheeswaran, Henning Jibben, Norbert Kockmann
{"title":"3D-printed open-source sensor flow cells for microfluidic temperature, electrical conductivity, and pH value determination","authors":"Robin Dinter, Lennart Helwes, Stijn de Vries, Kausik Jegatheeswaran, Henning Jibben, Norbert Kockmann","doi":"10.1007/s41981-024-00319-y","DOIUrl":"https://doi.org/10.1007/s41981-024-00319-y","url":null,"abstract":"<p>Due to the miniaturization of equipment for flow chemistry and microprocess engineering, low-cost sensors and analytical devices are becoming increasingly important for automated inline process control and monitoring. The combination of 3D printing technology and open-source lab automation facilitates the creation of a microfluidic toolbox containing tailored actuators and sensors for flow chemistry, enabling a flexible and adaptable design and efficient processing and control based on the measured data. This contribution presents a set of 3D-printed microfluidic sensor flow cells for inline measurement of temperature, electrical conductivity (EC), and pH value, while compensating for the temperature dependence of EC and pH. The tailored sensor flow cells were tested using model reactions in a single-phase capillary flow system. They have an accuracy comparable to reference sensors in batch measurements. The sensor data can be used to monitor the reaction progress (conversion), determine the kinetic data (activation energy, pre-exponential factors) of saponification reactions, and identify titration characteristics (equivalence and isoelectric points) of neutralization reactions. Hence, the 3D-printed microfluidic sensor flow cells offer an attractive alternative to commercial analytical flow devices for open-source and low-cost lab automation.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and structural parameter optimization of Venturi-type microbubble reactor for wastewater treatment by CFD simulation 通过 CFD 仿真优化用于废水处理的文丘里型微气泡反应器的设计和结构参数
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-02-27 DOI: 10.1007/s41981-024-00317-0
Hanfei Liu, Chao Li, Shuangfei Zhao, Hao Zhu, Yiping Huang, Wei He, Yue Zhao, Yuguang Li, Kai Guo
{"title":"Design and structural parameter optimization of Venturi-type microbubble reactor for wastewater treatment by CFD simulation","authors":"Hanfei Liu, Chao Li, Shuangfei Zhao, Hao Zhu, Yiping Huang, Wei He, Yue Zhao, Yuguang Li, Kai Guo","doi":"10.1007/s41981-024-00317-0","DOIUrl":"https://doi.org/10.1007/s41981-024-00317-0","url":null,"abstract":"<p>Microbubble reactors play an important role in the development of gas-liquid reaction process enhancement. However, the urgent demand for high efficiency and low energy consumption in gas-liquid reaction processes, as well as the trend towards large-scale production, have put forward higher requirements for the design and optimization of microbubble reactors. In this study, a self-priming microbubble reactor was designed and its structure parameters were optimized by (computational fluid dynamics) CFD simulations. Based on the grid division method combining structured and unstructured grids, the most suitable mesh number is selected, and the simulation calculation time is saved on the premise of ensuring the accuracy. The effects of five structural parameters on the gas content and energy loss was discussed and the optimal structural parameters of the microbubble reactor were determined as follows: the diffusion section length is 75 mm, the contraction angle is 22°, the diffusion angle is 10.5°, the inlet diameter of the gas phase is 6 mm, the inlet diameter of the liquid phase flowing into the gas chamber is 3 mm, the diffusion section inlet diameter is 5 mm. Under the condition of the same inlet flow rate, the outlet gas content of the optimized gas-liquid reactor is increased by 42.9% compared with the initial structure. In the wastewater treatment experiment, the microbubble reactor reduced the chemical oxygen demand of wastewater by 61% within three hours. This study provides significant references for the design of the self-priming microbubble reactor.</p>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lab-scale flow chemistry? Just do it yourself! 实验室规模的流动化学?自己动手
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-02-23 DOI: 10.1007/s41981-024-00312-5
Laura Y. Vázquez-Amaya, Guglielmo A. Coppola, Erik V. Van der Eycken, Upendra K. Sharma
{"title":"Lab-scale flow chemistry? Just do it yourself!","authors":"Laura Y. Vázquez-Amaya, Guglielmo A. Coppola, Erik V. Van der Eycken, Upendra K. Sharma","doi":"10.1007/s41981-024-00312-5","DOIUrl":"https://doi.org/10.1007/s41981-024-00312-5","url":null,"abstract":"<p>In the realm of flow chemistry, Do-It-Yourself (DIY) flow setups represent a versatile and cost-effective alternative to expensive commercially available reactors. Not only they are budget friendly, but also unlock a world of possibilities for researchers to explore and create customized setups tailored to their specific needs. This minireview serves as a short compendium of DIY flow systems to assist flow researchers in the challenging task of finding a suitable setup for their experiments and facilitate the transition from batch to flow chemistry. Our goal is to demonstrate that flow chemistry can be affordable, easy-to-build, and reproducible at the same time. Therefore, herein we review and describe selected illustrative examples of easily assembled/constructed DIY flow setups, with a particular emphasis on how to select the most suitable one based on the specific chemistry of interest, ranging from simple homogeneous monophasic reactions to more complex systems for photo-, electrochemistry, and so on. In addition, we briefly comment on the significance of DIY approach on education, particularly its integration into the standard undergraduate curriculum as a key educational tool for young chemists. Ultimately, we hope this mini review will help and encourage the reader to go with the flow and get started with the fine art of flow chemistry.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical synthesis of tetrahydrofolate by highly efficient catalytic hydrogenation in continuous flow 通过连续流高效催化加氢法合成四氢叶酸的实用方法
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-02-16 DOI: 10.1007/s41981-024-00310-7
Heng Pang, Junrong Huang, Juntao Wang, Gang Wang, Ana Xu, Lei Luo, Qunhui Yuan, Hengzhi You, Fen-Er Chen
{"title":"Practical synthesis of tetrahydrofolate by highly efficient catalytic hydrogenation in continuous flow","authors":"Heng Pang, Junrong Huang, Juntao Wang, Gang Wang, Ana Xu, Lei Luo, Qunhui Yuan, Hengzhi You, Fen-Er Chen","doi":"10.1007/s41981-024-00310-7","DOIUrl":"https://doi.org/10.1007/s41981-024-00310-7","url":null,"abstract":"<p>Hundred-gram scale of highly selective catalytic hydrogenation of folic acid has been developed, which is adopted continuous-flow technology with Raney Ni as a catalyst. Through optimization of the reaction condition, a high conversion rate of folic acid (&gt; 99%) and a high selectivity (99%) of tetrahydrofolate have been achieved. Additionally, a high-purity calcium-6<i>S</i>-5-methyltetrahydrofolate (6<i>S</i>-5-MTHF.Ca) has been synthesized from tetrahydrofolate obtained by continuous hydrogenation through chiral resolution, methylation, salting and recrystallization (purity: 99.5%, <i>de</i>: 97.6%). Compared to known methods, this method provides a feasible procedure using simple, inexpensive, and readily available reagents, making it a step-economical and cost-effective alternative strategy for production of tetrahydrofolate and its active derivatives.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>For Table of Contents Only</p>\u0000","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A perspective on the past, the present, and the future of computational fluid dynamics (CFD) in flow chemistry 透视流动化学中计算流体力学 (CFD) 的过去、现在和未来
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-02-16 DOI: 10.1007/s41981-024-00313-4
Natan Padoin, Tatiana Matiazzo, Humberto Gracher Riella, Cíntia Soares
{"title":"A perspective on the past, the present, and the future of computational fluid dynamics (CFD) in flow chemistry","authors":"Natan Padoin, Tatiana Matiazzo, Humberto Gracher Riella, Cíntia Soares","doi":"10.1007/s41981-024-00313-4","DOIUrl":"https://doi.org/10.1007/s41981-024-00313-4","url":null,"abstract":"<p>Flow chemistry is the future of chemical processing. It represents a significant advance in energy consumption and waste generation regarding operations in batch and continuous flow macroscopic equipment since the transport rate (of mass, heat, photons, electrons, etc.) is tremendously intensified. In parallel, computational fluid dynamics (CFD) is part of engineering’s future. Digitalization of transport processes (involving fluid flow and scalar transport, e.g., species, energy, etc.) is the state-of-the-art for designing, optimizing, and scaling chemical reactors, separation and purification units, heat exchangers, etc. This perspective initially presents relevant fundamental CFD concepts applicable to any field. In the sequence, an overview of applications of CFD in flow chemistry reported in the literature over the last two decades is presented, highlighting the evolution of complexity and variety of topics investigated (ranging from single-phase flow optimization to multiphysics cases involving coupling of multiphase flow and external forces—e.g., ultrasound and electric field). Next, the contributions of our research group in CFD in flow chemistry are presented—with a focus on photocatalytic and electrocatalytic systems—and accompanied by highlights about our personal experience. Further discussion about strengths, limitations, and opportunities for CFD in flow chemistry is presented, highlighting to the reader the gaps that should be in the spotlight over the next few years, followed by our final remarks. After reading this perspective, the reader (either a starter in this field or an expert) will be able to identify how CFD has evolved in flow chemistry over the years and what are the next directions from the authors’ point of view.</p>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in cofactor immobilization for enhanced continuous-flow biocatalysis 用于增强连续流生物催化的辅助因子固定化研究进展
IF 2.7 4区 化学
Journal of Flow Chemistry Pub Date : 2024-02-14 DOI: 10.1007/s41981-024-00315-2
Bente Reus, Matteo Damian, Francesco G. Mutti
{"title":"Advances in cofactor immobilization for enhanced continuous-flow biocatalysis","authors":"Bente Reus, Matteo Damian, Francesco G. Mutti","doi":"10.1007/s41981-024-00315-2","DOIUrl":"https://doi.org/10.1007/s41981-024-00315-2","url":null,"abstract":"<p>The merging of biocatalysis with continuous-flow chemistry opens up new opportunities for sustainable and efficient chemical synthesis. Cofactor-dependent enzymes are essential for various industrially attractive biocatalytic reactions. However, implementing these enzymes and biocatalytic reactions in industry remains challenging due to the inherent cost of cofactors and the requirement for their external supply in significant quantities. The development of efficient, low cost, simple and versatile methods for cofactor immobilization can address this important obstacle for biocatalysis in flow. This review explores recent progress in cofactor immobilization for biocatalysis by analyzing advantages and current limitations of the available methods that comprise covalent tethering, ionic adsorption, physical entrapment, and hybrid variations thereof. Moreover, this review analyzes all these immobilization techniques specifically for their utilization in continuous-flow chemistry and provides a perspective for future work in this area. This review will serve as a guide for steering the field towards more sustainable and economically viable continuous-flow biocatalysis.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信