Katherine Betts, Yuhan Jiang, Michael Frailey, Kidus Yohannes, Zhange Feng
{"title":"Potential-Dependent ATR-SEIRAS and EQCM-D Analysis of Interphase Formation in Zinc Battery Electrolytes.","authors":"Katherine Betts, Yuhan Jiang, Michael Frailey, Kidus Yohannes, Zhange Feng","doi":"10.1021/acsami.4c15318","DOIUrl":"10.1021/acsami.4c15318","url":null,"abstract":"<p><p>With the heightening interest in bivalent battery technology, there arises a necessity for a thorough investigation into zinc-ion battery (ZIB) electrolytes, accommodating their chemical attributes and potential-dependent structural dynamics. While the phenomenon of in situ solid electrolyte interphase formation is extensively documented in lithium-ion batteries, its analogous occurrences in ZIBs remain limited. Herein is a comparative study of three zinc electrolytes of interest: ZnSO<sub>4</sub>, ZnOTF, and Zn(TFSI)<sub>2</sub>/LiTFSI hybrid water-in-salt electrolyte. Additionally, the impact of an acetonitrile additive is scrutinized, with a comparative assessment of the interfacial behavior in aqueous solutions. Utilizing ATR-SEIRAS, potential-dependent alterations in the composition of the electrolyte/electrode interface were monitored, while EQCM-D facilitated a comprehensive understanding of variations in the mass and structural properties of the adsorbed layer. Aqueous ZnSO<sub>4</sub> demonstrated the accumulation of porous Zn<sub>4</sub>SO<sub>4</sub>(OH)<sub>6</sub>·<i>x</i>H<sub>2</sub>O at negative potentials, leading to a mass of 1.47 μg cm<sup>-2</sup> after five cycles. Bisulfate formation was observed at positive potentials. SEIRAS measurements for ZnOTF demonstrated reorientation and surface adsorption of CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> to favor CF<sub>3</sub> at the surface for positive potentials, and acetonitrile showed increased stability for the electrode at negative potentials. The additive was also reported to lead to the accumulation of a substantial passivation layer with viscoelastic properties. The zinc water-in-salt showed exceptional surface stability at negative potentials and a widened potential window. A thin rigid zinc SEI layer is reported with a mass of 0.7 μg cm<sup>-2</sup>. The compositional intricacies of these surface structures are discussed in relation to their solvent conditions. This investigation not only sheds light on the initial charge/discharge cycles in ZIBs but also underscores their pivotal role in instigating enduring transformations that can significantly influence their long-term cycling performance.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel Granados-Moreno, Rosalía Cid, Maria Arnaiz, Eider Goikolea, Jon Ajuria
{"title":"How Does Li<sub>2</sub>C<sub>4</sub>O<sub>4</sub> Prelithiation Additive Influence the Solid Electrolyte Interphase of Dual Carbon Lithium-Ion Capacitors?","authors":"Miguel Granados-Moreno, Rosalía Cid, Maria Arnaiz, Eider Goikolea, Jon Ajuria","doi":"10.1021/acsami.4c09411","DOIUrl":"10.1021/acsami.4c09411","url":null,"abstract":"<p><p>Prelithiation is a critical step in dual carbon lithium-ion capacitors (LICs) due to the lack of Li<sup>+</sup> in the system, which needs to be incorporated externally to avoid electrolyte depletion. Several prelithiation techniques have been developed over the years, and recently, dilithium squarate (Li<sub>2</sub>C<sub>4</sub>O<sub>4</sub>) has been reported as an air-stable, easy to synthesize, safe, and cost-effective prelithiation reagent for LICs. Li<sub>2</sub>C<sub>4</sub>O<sub>4</sub> has successfully been used in a wide range of chemistries, and its integration into positive electrodes has been scaled up to roll-to-roll processing and demonstrated in multilayer pouch cells. However, its influence in the solid electrolyte interphase (SEI) has not yet been studied. In this work, the SEI formed on the hard carbon (HC) negative electrode when using Li<sub>2</sub>C<sub>4</sub>O<sub>4</sub> as a prelithiation agent has been studied by X-ray photoelectron spectroscopy (XPS). The electrode surface has been analyzed in the lithiated and delithiated states along the first lithiation cycle, as well as at the end of the prelithiation protocol, to gain insight into the SEI formation and evolution during the prelithiation process. In addition, an aging test has been carried out to study the long-term SEI stability. We have observed that the use of Li<sub>2</sub>C<sub>4</sub>O<sub>4</sub> induces a chemical modification in the composition of the SEI with respect to the SEI that forms by using a standard electrochemical prelithiation process, resulting in a less soluble interface. Therefore, the chemical composition of the SEI is stable over cycling. Those findings confer to Li<sub>2</sub>C<sub>4</sub>O<sub>4</sub> the ability to tune the SEI of the devices, enabling its use in LICs and LIBs not only as a prelithiation agent but also as a film-forming additive.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yijun Wu, Xiaochen Wang, Longxia Li, Mingyang Wang, Sui Tian, Jinfeng Song, Yunfeng Ma
{"title":"Preparation of Glutathione-Regulated Sorafenib Targeted Nanodrug Delivery System and Its Antihepatocellular Carcinoma Activity","authors":"Yijun Wu, Xiaochen Wang, Longxia Li, Mingyang Wang, Sui Tian, Jinfeng Song, Yunfeng Ma","doi":"10.1021/acsami.4c11076","DOIUrl":"https://doi.org/10.1021/acsami.4c11076","url":null,"abstract":"To enhance the therapeutic effect of sorafenib (SOR) on liver cancer, we have developed a targeted nanodrug delivery system with glutathione (GSH) downregulation functionality. The preparation process comprises the synthesis of amino-functionalized mesoporous silica nanoparticles (MSN-NH<sub>2</sub>), surface modification with ethacrynic acid (EA), loading of SOR into the pores, and final surface coating with hyaluronic acid (HA) to obtain SOR@MSN-EA@HA (SMEH) nanoparticles. SMEH nanoparticles specifically enter tumor cells via CD<sub>44</sub> receptor-mediated endocytosis. EA binds to GSH to consume it, while SOR is slowly released from the pores to exert antitumor effects while inhibiting GSH production. This results in sustained oxidative stress in the cells, thus enhancing the antitumor efficacy. Both <i>in vitro</i> and <i>in vivo</i> antitumor experiments as well as hemolysis tests have demonstrated that SMEH nanoparticles can accurately target liver cancer cells, effectively downregulate GSH concentration, exhibit good antitumor effects, and possess excellent safety, showing great potential in tumor treatment.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingying Ren, Qiushu Chen, Zhiwei Lu, Gehong Su, Chun Wu, Hanbing Rao, Yanying Wang, Xing Wei, Mengmeng Sun
{"title":"MnNi@PVP Nanoenzyme Based on Regulating Inflammation and Immune Homeostasis for the Therapy of Inflammatory Bowel Disease","authors":"Yingying Ren, Qiushu Chen, Zhiwei Lu, Gehong Su, Chun Wu, Hanbing Rao, Yanying Wang, Xing Wei, Mengmeng Sun","doi":"10.1021/acsami.4c11100","DOIUrl":"https://doi.org/10.1021/acsami.4c11100","url":null,"abstract":"Nanozymes exhibiting remarkable antioxidant capabilities represent an effective therapeutic approach for ulcerative colitis (UC). This study synthesized the MnNi@PVP nanoenzyme through high-temperature pyrolysis and the NaCl template method, which exhibited multienzyme activity comprising glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). This study investigated the therapeutic effect of MnNi@PVP on colitis caused by sodium dextran sulfate (DSS). The findings indicated that MnNi@PVP notably decreased the disease activity index (DAI) score, which encompasses weight loss, colon shortening, and histopathological changes. MnNi@PVP showed effectiveness in addressing oxidative damage and suppressing the levels of proinflammatory markers, such as tumor necrosis factor (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin (IL)-6, by inactivating the TLR4 pathway and macrophages. In addition, MnNi@PVP demonstrated the ability to repair tight junction proteins (occludin and ZO-1) and restore the intestinal barrier. The transcriptome sequencing demonstrated that MnNi@PVP could regulate inflammatory factor expression pathways and immune processes. Additionally, negatively charged MnNi@PVP can selectively bind to inflamed colonic tissues through electrostatic interactions, endowing it with targeted reparative capabilities at the location of intestinal inflammation. The MnNi@PVP, which possesses the reactive oxygen and nitrogen species (RONS) clearance capability examined in this section, is expected to provide the basis for the targeted repair of intestinal function.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luca Panarella, Stanislav Tyaginov, Ben Kaczer, Quentin Smets, Devin Verreck, Alexander Makarov, Tom Schram, Dennis Lin, César Javier Lockhart de la Rosa, Gouri S Kar, Valeri Afanas'ev
{"title":"Experimental-Modeling Framework for Identifying Defects Responsible for Reliability Issues in 2D FETs.","authors":"Luca Panarella, Stanislav Tyaginov, Ben Kaczer, Quentin Smets, Devin Verreck, Alexander Makarov, Tom Schram, Dennis Lin, César Javier Lockhart de la Rosa, Gouri S Kar, Valeri Afanas'ev","doi":"10.1021/acsami.4c10888","DOIUrl":"10.1021/acsami.4c10888","url":null,"abstract":"<p><p>In this work, a self-consistent method is used to identify and describe defects plaguing 300 mm integrated 2D field-effect transistors. This method requires measurements of the transfer characteristic hysteresis combined with physics-based modeling of charge carrier capture and emission processes using technology computer aided design (TCAD) tools. The interconnection of experiments and simulations allows one to thoroughly characterize charge trapping/detrapping by/from defects, depending on their energy position. Once the trap energy distribution is extracted, it is used as input in transient TCAD simulations to reproduce the experimental hysteretic transfer characteristics. Our method is widely applicable to any 2D channel/gate stack combination. Here, it is demonstrated on FAB-integrated devices with AlO<sub><i>x</i></sub>/HfO<sub>2</sub> gate oxide. A Gaussian-approximated defect band in the AlO<sub><i>x</i></sub> interlayer centered at a position of about 0.1 eV below the conduction band minimum of WS<sub>2</sub> is obtained. Based on this energy position, it is concluded that aluminum interstitial and oxygen vacancies are the defects giving rise to the observed hysteresis. These defects are detrimental to the stability of the studied devices as they are easily accessible by channel carriers during on-state operation. A prominent hysteresis obtained during measurements is consistent with this conclusion.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Yadav, Hyerin Kim, Thavamani Gokulnath, Jin Soo Yoo, Myeong Jin Jeon, Raja Kumaresan, Ho-Yeol Park, Sung-Ho Jin
{"title":"Nonhalogenated Solvent-Processed Efficient Ternary All-Polymer Solar Cells Enabled by the Introduction of a Naphthyloxy Group into the Side Chain of Polymer Donors.","authors":"Priyanka Yadav, Hyerin Kim, Thavamani Gokulnath, Jin Soo Yoo, Myeong Jin Jeon, Raja Kumaresan, Ho-Yeol Park, Sung-Ho Jin","doi":"10.1021/acsami.4c13569","DOIUrl":"10.1021/acsami.4c13569","url":null,"abstract":"<p><p>Conjugated polymer donors are crucial for enhancing the power conversion efficiencies (PCEs) in all-polymer solar cells (All-PSCs) in nonhalogenated solvents. In this work, three wide-band-gap polymer donors (Sil-D1, Ph-Sil-D1, and Nap-Sil-D1) based on dithienobenzothiadiazole (DTBT) and benzodithiophene (BDT) donor moieties optimized by side chain engineering were designed and synthesized. Alkyl (Sil-D1), phenyloxy (Ph-Sil-D1), and naphthyloxy (Nap-Sil-D1) alkyl siloxane side chain units were incorporated into these polymer donors, respectively. Notably, the Nap-Sil-D1 polymer donor had a greater conjugation length, π-electron delocalization, and improved dipole moment. The deepest highest occupied molecular orbital level of Nap-Sil-D1, with a high absorption coefficient, showed better aggregation properties. In addition, reduced bimolecular recombination and trap-state density generated a high charge transfer to cause a significant enhancement of open-circuit voltage, current density, and fill factor values of 0.94 V, 25.5 mA/cm<sup>2</sup>, and 70.4%, respectively, for the Nap-Sil-D1-blended All-PSC ternary device (PM6:Nap-Sil-D1:PY-IT), with the highest PCE of 16.8% in the <i>o</i>-xylene solvent, compared to other polymers (Sil-D1 and Ph-Sil-D1) with PCEs of 15.5 and 16.2%. As a result, this optimized device architecture was found to be the most promising as a nonhalogenated solvent processed in additive-free ternary All-PSCs with good stability.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spin-Tunneling Magnetoresistive Effects in Bottom-Up-Grown Ni/Graphene/Ni Nanojunctions.","authors":"Weicheng Qiu, Fuze Jiang, Junping Peng, Mengchun Pan, Peisen Li, Jiafei Hu, Yueguo Hu","doi":"10.1021/acsami.4c11199","DOIUrl":"10.1021/acsami.4c11199","url":null,"abstract":"<p><p>Two-dimensional (2D) materials embedded in magnetic tunnel junctions (MTJs) provide a platform to increase the control over spin transport properties by the proximity spin-filtering effect. This could be harnessed to craft spintronic devices with low power consumption and high performance. We explore the spin transport in the 2D MTJs based on graphene, which is uniformly grown on Ni(111) substrates using the chemical vapor deposition technique. After the Ni thin film is deposited bottom-up on the well-grown Ni(111)/graphene surface in an e-beam evaporation system by the physical vapor deposition method, the Ni/graphene/Ni nanojunction array devices are successfully prepared by using nanography technology. Evidence of the emergence of tunneling magnetoresistance (TMR) effects with ultrasmall resistance × area products in graphene-based nanojunctions is observed by the exclusion of anisotropic magnetoresistance. The theoretical analysis shows that this TMR is mainly attributed to the strong spin-filtering effect at the perfect Ni(111)/graphene interface. Besides, earlier findings indicate that the TMR would be promoted more effectively if the short-circuit effect formed in the process of nanographic etching by an ion beam can be further eliminated. Overall, this study provides a path to harness the full potential of graphene-based MTJ array devices with a high efficiency and performance.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and Optimization of Foam Copper-Based CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF Catalyst: Achieving Efficient Catalytic Oxidation of Paraxylene.","authors":"Youxiao Xu, Guangfei Qu, Huanhuan Wu, Chenyang Zhao, Rui Xu, Ping Ning, Junyan Li","doi":"10.1021/acsami.4c11647","DOIUrl":"10.1021/acsami.4c11647","url":null,"abstract":"<p><p>This study successfully developed a foam copper (CF)-based CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF composite catalyst, achieving efficient thermal catalytic oxidation of paraxylene through multifactor optimization of synthesis conditions. At a Co:Mn molar ratio of 2:1 and a calcination temperature of 450 °C, the catalyst exhibited outstanding catalytic performance, with a <i>T</i><sub>90</sub> temperature as low as 246 °C, significantly lower than that of catalysts synthesized under other conditions. Additionally, BET, XPS, Raman, EPR, and H<sub>2</sub>-TPR test results indicate that the catalyst possesses a high specific surface area, abundant oxygen vacancies, a distribution of multivalent Co and Mn species, and a lower hydrogen reduction temperature, all of which contribute to the high catalytic activity of CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF. Furthermore, <i>in situ</i> DRIFTS confirmed that the oxidation of paraxylene on CoMnO<sub><i>x</i></sub>@Co<sub>3</sub>O<sub>4</sub>/CF follows the Mars-Van Krevelen (MvK) mechanism. The proposed reaction pathway begins with the oxidation of the methyl group on paraxylene, followed by the opening of the benzene ring and further oxidation to CO<sub>2</sub> and H<sub>2</sub>O. The innovative structural design and excellent catalytic performance of this catalyst provide new insights and solutions for the industrial treatment of VOCs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianqin Zhang, Siyu Wang, Jinlong Song, Xiaolong Yang
{"title":"Boosting Droplet Transport for Fog Harvest.","authors":"Qianqin Zhang, Siyu Wang, Jinlong Song, Xiaolong Yang","doi":"10.1021/acsami.4c10213","DOIUrl":"10.1021/acsami.4c10213","url":null,"abstract":"<p><p>Wedge-shaped superhydrophilic tracks have been considered as one of the most effective ways to transport droplets for diverse cutting-edge applications, e.g., energy harvesting and lab-on-a-chip devices. Although significant progress, such as serial wedge-shaped tracks with curved edges, has evolved to advance the liquid transport, the ultrafast and long-distance transporting of drop-shaped liquid remains challenging. Here, inspired by the cactus spine that enables fast droplet transport and the serial spindle knot of spider silk, which is capable of collecting condensate from a wide range of distances, we created serial wedge-shaped superhydrophilic patterns and optimized their side edges with a convex brachistochrone curve to boost the acceleration. The junctions of the serial patterns were meanwhile reformed into concave brachistochrone curves to lower the energy barrier for sustained transport. For transporting the liquid in drop shapes to the long distance at high velocity, the wedge-shaped tracks were slenderized to the greatest extent to suppress the liquid spreading and thus prevent the degradation of the Laplace driving force. Moreover, the junction that determines the energy barrier of droplet striding was carefully designed based on the principle of minimizing momentum loss. The exquisite architecture design pushed the droplet transport to a maximum instantaneous velocity of 207.7 mm·s<sup>-1</sup> and an outermost transport distance of 120.5 mm, exceeding most wettability or geometric gradient based reports. The transported volume of the droplets can be readily regulated by simply scaling the created architectures. The enhanced droplet transport facilitates the motion and departure of the cohered droplets, enabling a 1.9-fold rise of the water collection rate and 12-fold increase of the heat transfer coefficient during the fog harvest test. This scalable, controllable, and easily fabricatable surface design provides an essential pathway in realizing high-performance manipulation of droplets and possibly pioneers substantial innovative applications in multidisciplinary fields. Those include but are not limited to energy harvesting, lab-on-a-chip devices, and MEMS systems.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"La<sub>1-<i>x</i></sub>Sr<sub><i>x</i></sub>FeO<sub>3-δ</sub> Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to <i>tert</i>-Butyl Alcohol.","authors":"Masanao Yamamoto, Takeshi Aihara, Keiju Wachi, Michikazu Hara, Keigo Kamata","doi":"10.1021/acsami.4c15585","DOIUrl":"10.1021/acsami.4c15585","url":null,"abstract":"<p><p>The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to <i>tert</i>-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe<sup>4+</sup> such as BaFeO<sub>3-δ</sub>, SrFeO<sub>3-δ</sub>, and La<sub>1-<i>x</i></sub>Sr<sub><i>x</i></sub>FeO<sub>3-δ</sub> exhibited catalytic performance superior to those of other Fe<sup>3+</sup>- and Fe<sup>2+</sup>-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO<sub>3</sub> significantly enhanced the catalytic performance and durability. In particular, the La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3-δ</sub> catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO<sub>3-δ</sub> and SrFeO<sub>3-δ</sub> catalysts were almost inactive. La<sub>0.8</sub>Sr<sub>0.2</sub>FeO<sub>3-δ</sub> promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La<sub>1-<i>x</i></sub>Sr<sub><i>x</i></sub>FeO<sub>3-δ</sub> on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe<sup>3+</sup>/Fe<sup>4+</sup> valence states of La<sub>1-<i>x</i></sub>Sr<sub><i>x</i></sub>FeO<sub>3-δ</sub> nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of <i>tert</i>-butyl hydroperoxide.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}