{"title":"Dynamic Flow-Assisted Nanoarchitectonics","authors":"Katsuhiko Ariga, Shuta Fujioka, Yu Yamashita","doi":"10.1021/acsami.5c03820","DOIUrl":"https://doi.org/10.1021/acsami.5c03820","url":null,"abstract":"The solution to societal problems such as energy, environmental, and biomedical issues lies in the development of functional material systems with the capacity to address these problems. In the course of human development, we are entering a new era in which nanostructure control is considered in the major development of functional materials. The new concept of nanoarchitectonics is particularly significant in this regard, as it comprehensively promotes further development of nanotechnology and its fusion with materials chemistry. The integration of nanoscale phenomena and macroscopic actions is imperative for practical production of functional materials with nanoscale structural precision. This review focuses on dynamic flow-assisted nanoarchitectonics, wherein we explore the organization and control of functional structures by external mechanical stimuli, predominantly fluid flow. The review then proceeds to select some examples and divide them into categories for the purpose of discussion: structural organization by (i) natural flow, (ii) flow or stress created with artificial equipment or devices (forced flow), and (iii) flow at a specific field, namely interfaces, that is, layer-by-layer (LbL) assembly and the LB method. The final perspective section discusses the future research directions and requirements for dynamic flow-assisted nanoarchitectonics. The meaningful and effective use of nanotechnology and nanoarchitectonics in materials science is set to be a major area of focus in the future, and dynamic flow-assisted nanoarchitectonics is poised to play a significant role in achieving this objective.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"33 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Renewable and Switchable Biofunctional Modification of Poly(dimethylsiloxane) Surfaces via Host–Guest Interactions for Enhanced Capture of Circulating Tumor Cells in Microfluidics","authors":"Shengen Gu, Jiao Lei, Shuaihang Guo, Jun Sun, Yu Duan, Aiqing Li, Mengying Zhan, Lisha Pan, Feng Zhou, Xiaoli Liu, Hong Chen","doi":"10.1021/acsami.5c00707","DOIUrl":"https://doi.org/10.1021/acsami.5c00707","url":null,"abstract":"Circulating tumor cells (CTCs) are crucial for understanding cancer metastasis. Poly(dimethylsiloxane) (PDMS) microfluidic chips utilizing aptamers (APTs) effectively separate CTCs, but the hydrophobicity of PDMS causes issues with nonspecific adsorption and reduces cell viability. Therefore, it is imperative to develop innovative surface modification techniques for PDMS to enhance its biocompatibility and optimize its performance in microfluidic applications. In this study, oligo(ethylene glycol) methacrylate (OEGMA) and adamantane-modified OEGMA were copolymerized onto an initiator-containing PDMS surface. Poly(OEGMA) prevents nonspecific adsorption, and biotin-modified β-cyclodextrin (β-CD) was introduced through host–guest interaction between β-CD and adamantane. By using the biotin–streptavidin interaction, streptavidin and biotin-modified aptamers (TD05 APT and Sgc8 APT) were sequentially immobilized on the copolymer-grafted PDMS substrate. The data indicate that the PDMS substrate functionalized with TD05 APT achieved a capture efficiency of 91% and a selectivity of 30.2 for Ramos cells, while the substrate functionalized with Sgc8 APT achieved a capture efficiency of 93% and a selectivity of 33.3 for CEM cells. Furthermore, treating the APT-functionalized surfaces with sodium dodecyl sulfate released the β-CD component, allowing for the regeneration and switching of the surface biofunctionality by reimmobilizing TD05 APT or Sgc8 APT. Finally, the PDMS microfluidic chips modified using this strategy achieved high capture efficiency (96% for Ramos cells, 93% for CEM cells) and high selectivity (11.4 for Ramos cells, 9.2 for CEM cells). The host–guest chemistry endows the modified PDMS substrate with renewable and switchable biofunctionality, offering insights into the potential applications in the isolation and enrichment of CTCs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"37 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuela Cedrún-Morales, Martina Migliavacca, Manuel Ceballos, Marta Perez-Maseda, Giulia Zampini, María Teresa Alameda Felgueiras, Jon Ostolaza-Paraiso, Marisa Juanes, Irene Rincón, David Fairen-Jimenez, Javier Montenegro, Patricia Horcajada, Ester Polo, Beatriz Pelaz, Pablo del Pino
{"title":"Clickable Polymer-Based Coatings for Modulating the Interaction of Metal–Organic Framework Nanocrystals with Living Cells","authors":"Manuela Cedrún-Morales, Martina Migliavacca, Manuel Ceballos, Marta Perez-Maseda, Giulia Zampini, María Teresa Alameda Felgueiras, Jon Ostolaza-Paraiso, Marisa Juanes, Irene Rincón, David Fairen-Jimenez, Javier Montenegro, Patricia Horcajada, Ester Polo, Beatriz Pelaz, Pablo del Pino","doi":"10.1021/acsami.5c01695","DOIUrl":"https://doi.org/10.1021/acsami.5c01695","url":null,"abstract":"Nanosized microporous metal–organic-frameworks (NMOFs) serve as versatile drug delivery systems capable of navigating complex microenvironments and interacting with cells in specific tissues. The physicochemical properties of NMOFs, such as size, composition, porosity, colloidal stability, and external surface functionalization are essential for their success as efficient carriers. This study introduces a flexible, clickable coating using an amphiphilic polymer derivatized with dibenzo cyclooctyne groups as a universal, postsynthetic functionalization tool. To prove its universality, nanosized MOFs with different structure and composition (UiO-67, NU-1000, PCN-222, and ZIF-8) were produced with high monodispersity and were coated with a clickable, amphiphilic polymer. The resulting polymer-coated NMOFs display exceptional colloidal and structural stability in different biologically relevant media. For comparative purposes, we selected two size-equivalent NMOFs, ZIF-8 and UiO-67, which were functionalized with a library of biologically relevant azide-derivatized (macro)molecules, including poly(ethylene glycol), mannose, and a dynein-binding cell-penetrating peptide, using a bioorthogonal reaction. The choice of ZIF-8 and UiO-67, both 150 nm in size but with distinct coordination and surface chemistries, is pivotal due to their differing acid and base stability characteristics, which may potentially influence their performance in cellular environments. To track their performance <i>in vitro</i>, the NMOFs were loaded with cresyl violet, a common histological stain and lysosomal marker. Cellular internalization of the surface-functionalized NMOFs was markedly governed by their distinct (macro)molecule characteristics. This demonstrates that surface properties critically influence uptake efficiency, while also highlighting the versatility and effectiveness of the proposed coating strategy. In particular, the one functionalized with the dynein-binding peptide demonstrated a markedly higher rate of cellular internalization compared to other NMOFs. In contrast, derivatizations with mannose and poly(ethylene glycol) are associated with a substantial reduction in cellular uptake, suggesting stealth behavior. These results provide a bioorthogonal and versatile alternative for the external surface engineering of NMOFs, aiming to improve targeted drug delivery effectiveness.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"13 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Precision Surface Tension Measurements of Sodium, Potassium, and Their Alloys via Du Noüy Ring Tensiometry","authors":"Naiyu Qi, Rachana Somaskandan, Gustav Graeber","doi":"10.1021/acsami.5c02183","DOIUrl":"https://doi.org/10.1021/acsami.5c02183","url":null,"abstract":"The development of post-lithium-ion batteries has sparked significant interest in alkali-metal anodes, particularly sodium (Na), potassium (K), and sodium–potassium (Na–K) alloys. Na–K alloys are promising for partially liquid anodes due to their unique low melting points. A critical factor influencing Na–K-based anode performance is wetting behavior, which governs electrical conductivity, mechanical contact, and long-term stability. At the heart of wetting lies surface tension, a fundamental property of solid–liquid–gas interactions. However, the surface tension of alkali metals and their alloys, particularly Na–K systems, remains poorly understood due to experimental and theoretical challenges. This study bridged these gaps by employing Du Noüy ring tensiometry for the first time in alkali-metal systems to measure the surface tension of Na, K, and Na–K alloys across temperatures from ambient to 180 °C. A key innovation in this work is the development of the push-in Du Noüy method, which provided significantly higher precision and reliability compared to the traditional pull-out technique, without requiring a correction factor. The measured surface tension decreased with increasing temperature for the studied Na–K alloys. For instance, for a eutectic Na–K mixture, the surface tension decreases from 121.7 mN m<sup>–1</sup> to 112.2 mN m<sup>–1</sup> when increasing the temperature from ambient to 180 °C. Additionally, this study presented the first use of Gibbs free energy minimization to model the surface tension of the Na–K system. The robust method significantly enhanced the predictive accuracy compared to the previous simplified model, reducing deviations from 25% to 2%. Our findings reveal that surface tension increases with sodium mole fraction in the bulk phase, yet the surface monolayer remains potassium-rich, indicating non-ideal surface behavior. This study deepens the understanding of alkali-metal wetting behavior, providing valuable insights for designing optimized interfaces in next-generation semi-solid alkali-metal batteries.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"4 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contiguous Mo Species and SMSI Effect in MoOx Reinforce Catalytic Performance in Reverse Water–Gas Shift Reaction","authors":"Takehiro Yamada, Yasutaka Kuwahara, Hiromi Yamashita","doi":"10.1021/acsami.4c22713","DOIUrl":"https://doi.org/10.1021/acsami.4c22713","url":null,"abstract":"Reverse water–gas shift (RWGS) reaction is a promising strategy for the effective valorization of CO<sub>2</sub>. Because of its endothermic nature, a high-performance catalyst with high durability at high temperatures has been required. Herein, we reveal the dynamic structural changes of platinum-loaded molybdenum suboxide catalysts (Pt/MoO<sub><i>x</i></sub>) in RWGS reaction by multiple <i>operando</i> and <i>in situ</i> measurements, and the catalyst exhibits high activity and CO selectivity, as well as high stability at 500 °C due to the emergence of contiguous Mo species (Mo--Mo) and the strong metal–support interaction (SMSI) effect in MoO<sub><i>x</i></sub>. <i>In situ</i> X-ray absorption fine structure (XAFS) measurements demonstrated that the RWGS reaction is driven by reversible redox of <i>in situ</i>-formed MoO<sub><i>x</i></sub> suboxide, where the contiguous Mo--Mo species in MoO<sub><i>x</i></sub> act as activation sites for CO<sub>2</sub>. Comprehensive analysis revealed that the MoO<sub><i>x</i></sub> shell surrounding the Pt nanoparticles (NPs) suppresses CO adsorption, thereby resulting in high CO selectivity. Furthermore, the catalyst exhibited a continuous activity increase in the earlier stage of operation at 500 °C, which was attributed to the partial carburization of MoO<sub><i>x</i></sub> during the reaction and the associated increase in the electron density of the Mo species. These findings advance the understanding of RWGS reaction mechanism and suggest innovative strategies for the development of high-performance oxide catalysts with enhanced stability.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"7 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143858277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hematoporphyrin-Modified Dendrimers Combined Immunoadjuvants for Enhanced Photoimmunotherapy of Colorectal Cancer","authors":"Hao Zhong, Jing Liang, Ximo Xu, Chengsheng Ding, Mengqin Yu, Naijipu Abuduaini, Jingyi Liu, Xiaohan Wang, Sen Zhang, Fei Wang, Bo Feng","doi":"10.1021/acsami.5c02413","DOIUrl":"https://doi.org/10.1021/acsami.5c02413","url":null,"abstract":"Photoimmunotherapy has emerged as a promising strategy for cancer therapy due to its increased therapeutic effect, ability to reverse drug resistance, and enhanced immune activation. But there is still a lack of effective nanomaterial-based photothermal therapy (PTT) or photodynamic therapy (PDT) agents in photoimmunotherapy. In this study, photosensitizer hematoporphyrin-modified G5 PAMAM (G5-HP) nanomaterials are synthesized, which exhibit excellent photothermal conversion capability and photodynamic effects under 660 nm irradiation, effectively inducing tumor cell ablation and immunogenic cell death (ICD). Besides, ICD induced by G5-HP can generate tumor-associated antigens, thereby enhancing dendritic cell (DC) maturation and subsequent T cell activation. In addition, G5-HP polymers can bind to Toll-like receptor (TLR) agonists CpG-ODN through electrostatic interaction, forming stable G5-HP/CpG nanoparticles. The incorporation of CpG-ODN as an immunoadjuvant further amplified DC maturation, synergizing with phototherapy to strengthen antitumor immunity. Notably, in vivo studies confirmed that G5-HP/CpG nanoparticles significantly suppressed colorectal tumor growth under laser irradiation, while maintaining excellent biocompatibility. Taken together, the synthesized G5-HP polymers perform excellent PTT and PDT efficacy, and the formed G5-HP/CpG nanoparticles effectively integrate phototherapy with DC-mediated immunotherapy. This study offers a promising strategy for colorectal cancer treatment, leveraging the synergistic effects of phototherapy and immunotherapy to achieve superior antitumor outcomes.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"45 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tsubasa Ueda, Akihiko Nemoto, Akira Ishigami, Yutaka Kobayashi, Hiroshi Ito
{"title":"Enhancing Mechanical Durability of Water-Soluble Microneedles with Cellulose Nanofibers via Thermal Imprinting","authors":"Tsubasa Ueda, Akihiko Nemoto, Akira Ishigami, Yutaka Kobayashi, Hiroshi Ito","doi":"10.1021/acsami.5c02368","DOIUrl":"https://doi.org/10.1021/acsami.5c02368","url":null,"abstract":"The study demonstrates the effectiveness of ultrahigh-pressure homogenizer (UHPH) cellulose nanofibers (CNFs) in improving the mechanical properties of poly(vinyl alcohol) (PVA) microneedle arrays (MNA). CNFs were incorporated into PVA nanocomposite films at concentrations of 0, 5, and 8 wt % using solvent casting and a nickel mold coated with a fluoropolymer was used to thermally imprint the films with MNA micropatterns at optimal mold temperatures and pressing pressure. The integration of CNFs substantially enhanced the morphological properties, surface modulus, and the accuracy of pattern replication in the nanocomposite. The augmented mechanical strength observed in the micropatterns, attributed to CNFs and subjected to UHPH treatment, can be ascribed to the physical entanglement and hydrogen bonding facilitating formation within the MNA micropattern.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"30 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-Step Coordinating POPD in H3BTB-Sensitized EuMOF-Enabled Tunable Antenna Effects for Fluorescence Turn-On Sensing of Sarin Analogue Vapor","authors":"Jialong Pang, Yali Liu, Chuanfang Zhao, Jiawen Li, Mengting Ran, Baiyi Zu, Xincun Dou","doi":"10.1021/acsami.5c04451","DOIUrl":"https://doi.org/10.1021/acsami.5c04451","url":null,"abstract":"The structural modification of metal–organic frameworks (MOFs) is of vital importance in many fields, especially in sensing with enhanced performance, while the efficient synthesis of functionalized MOF nanoparticles toward small molecule detection remains challenging. Here, a general cellulose nanofibril (CNF)-induced in situ one-step strategy was proposed for the synthesis of dual-ligand-functionalized europium-based MOF (EuMOF@CNF) nanoparticles under an effective regulation of the crystallization kinetics in hydrothermal synthesis. Based on the unique dual-ligand structure, the obtained EuMOF featured a tunable antenna effect and laid a good foundation for fluorescence-sensing materials. Benefiting from the superior self-assembly properties of CNFs and the tunable antenna effect of EuMOF@CNF, flexible sensing films were constructed, showing excellent mechanical properties (72 MPa for stress and 3.8% for strain) and tunable luminescence properties and achieving instant (1 s) and sensitive fluorescence sensing of sarin analogue vapor with a significantly low limit of detection (LOD, 2.8 ppb) and robust selectivity against a wide range of common interferents (>14 types), especially independent of common acids. We believe that this pioneering design of EuMOF with tunable antenna effects would positively advance the development of high-performance MOF-based fluorescent materials and devices.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"1 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143858293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conductivity of Electropolymerized Thiophene Films: Effect of Fused-Ring Thiophenes as the Monomer","authors":"Ganlin Liu, Xiangyu Zhang, Bohan Wang, Xinyu Wang, Haichao Liu, Cheng Zhou, Bing Yang, Liang Yao, Yuguang Ma","doi":"10.1021/acsami.5c01664","DOIUrl":"https://doi.org/10.1021/acsami.5c01664","url":null,"abstract":"Polythiophene and its derivatives have emerged as promising candidates for next-generation electronic applications due to their tunable conductivity and ease of synthesis via electropolymerization. Although fused-ring thiophene monomers have attracted considerable interest for the fabrication of polythiophene films with enhanced electronic properties, systematic investigations comparing their conductivities and elucidating the structural influence of fused-ring motifs remain limited. In this study, we explore the electropolymerization behavior of various fused-ring thiophene monomers and systematically evaluate their conductivities through in situ electrochemical conductance measurements. Complemented by theoretical calculations of monomer aromaticity using nucleus-independent chemical shift (NICS) and multicenter bond index (MCBI) analyses, our findings reveal that the inhomogeneous aromaticity of fused thiophene rings plays a pivotal role in determining the conductivity of the resulting polythiophene films.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"124 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143858292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward Rational Design of Carbon-Based Electrodes for High-Performance Supercapacitors","authors":"Chao Li, Qiuyan Yue, Yong Gao, Zhenglong Li, Jing Zhang, Mingchang Zhang, Shengnan He, Zhijun Wu, Yaxiong Yang, Jiantuo Gan, Chenchen Li, Xu Xue, Fulai Qi, Liaona She, Chao Zheng, Jian Miao, Detao Zhang, Zhenhai Xia, Hongge Pan","doi":"10.1021/acsami.4c21036","DOIUrl":"https://doi.org/10.1021/acsami.4c21036","url":null,"abstract":"Supercapacitors are electrical energy storage devices renowned for their high power density and long cycle life. However, their low energy density has limited their broader application, particularly in electric vehicles. Carbon nanomaterials, including carbon nanotubes and graphene, are among the most promising electrode materials for enhancing energy density due to their unique structures, excellent electrical, mechanical, and thermal properties, large specific surface area, and chemical inertness in both acidic and alkaline environments. Significant progress has been made in the development of high-performance carbon-based supercapacitors. In this Review, we begin by exploring the origin and mechanisms of charge storage in supercapacitors. We then summarize the current advancements in enhancing the capacitive performance. The theory and primary strategies for designing high-performance supercapacitors are discussed to provide guidance on electrode material selection and design. Finally, future research directions and perspectives are presented with the aim of advancing the development of efficient carbon-based supercapacitors.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"41 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}