ACS Applied Materials & Interfaces最新文献

筛选
英文 中文
Enhanced Efficiency and Stability of Triple-Cation Perovskite Solar Cells through Engineering of the Cell Interface with Phenylethylammonium Thiocyanate.
IF 8.3 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-09 DOI: 10.1021/acsami.4c16338
Haogang Meng, Xiaohui Li, Yongxiang Mai, Putao Zhang, Shengjun Li
{"title":"Enhanced Efficiency and Stability of Triple-Cation Perovskite Solar Cells through Engineering of the Cell Interface with Phenylethylammonium Thiocyanate.","authors":"Haogang Meng, Xiaohui Li, Yongxiang Mai, Putao Zhang, Shengjun Li","doi":"10.1021/acsami.4c16338","DOIUrl":"10.1021/acsami.4c16338","url":null,"abstract":"<p><p>It is reported that the tricationic mixed halide perovskite Cs<sub><i>x</i></sub>(FA<sub><i>y</i></sub>MA<sub>1-<i>y</i></sub>)<sub>1-<i>x</i></sub>Pb(I<sub><i>z</i></sub>Br<sub>1-<i>z</i></sub>)<sub>3</sub> (CsFAMA) possesses a stable crystal structure and outstanding bandgap tunability, rendering it one of the most competitive candidates for commercial perovskite solar cells (PSCs). Nevertheless, the numerous defects at the interface of the tricationic perovskite give rise to a significant constraint on the light capture performance of the device. Simultaneously, water molecules form intermediate compounds with the perovskite at the interface via hydrogen bonds, accelerating the degradation of the perovskite. This study reports the introduction of two-dimensional (2D) phenylethylthiocyanate (PEASCN) at the interface of three-dimensional (3D) perovskite. This approach significantly passivates the surface defects of the perovskite. Concurrently, due to the propensity of the organic ammonium cation PEA<sup>+</sup> to interact with the FA<sup>+</sup> base within the perovskite, SCN<sup>-</sup> is exposed outward to form a small-molecule hydrophobic layer. This method markedly reduces the loss of charge recombination and significantly enhances the device stability. The results indicate that the efficiency of the conventional device treated solely with PEASCN is as high as 23.94%. The unsealed device retains 85.12% of its initial efficiency after being placed in a conventional environment for 500 h. Furthermore, this surface passivation and hydrophobic strategy can be universally applicable to perovskite types with a high FA<sup>+</sup> content.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"69430-69438"},"PeriodicalIF":8.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micellization of Lipopeptides Containing Toll-like Receptor Agonist and Integrin Binding Sequences.
IF 8.3 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-09 DOI: 10.1021/acsami.4c18165
Valeria Castelletto, Lucas R de Mello, Jani Seitsonen, Ian W Hamley
{"title":"Micellization of Lipopeptides Containing Toll-like Receptor Agonist and Integrin Binding Sequences.","authors":"Valeria Castelletto, Lucas R de Mello, Jani Seitsonen, Ian W Hamley","doi":"10.1021/acsami.4c18165","DOIUrl":"10.1021/acsami.4c18165","url":null,"abstract":"<p><p>Short bioactive peptide sequences are of great interest in biomaterials development. We investigate the self-assembly of a lipopeptide containing both the highly cationic CSK<sub>4</sub> toll-like receptor agonist hexapeptide sequence and RGDS integrin-binding motif, i.e., C<sub>16</sub>-CSK<sub>4</sub>RGDS, as well as the control containing a scrambled terminal sequence C<sub>16</sub>-CSK<sub>4</sub>GRDS. Both lipopeptides are found to form micelles, as revealed by small-angle X-ray scattering and cryogenic transmission electron microscopy, and modeled using atomistic molecular dynamics simulations. We carefully examined methods to probe the aggregation of the molecules, i.e. to obtain the critical micelle concentration (CMC). Fluorescent probe assays using 1-anilino-8-naphthalenesulfonate (ANS) reveal low CMC values, 1-2 μM, which contrast with consistent values more than 2 orders of magnitude larger obtained from surface tension and electrical conductivity as well as unexpected UV/vis absorption spectra discontinuities and fluoresccence probe assays using Nile red. The anomalous results obtained from an ANS fluorescence probe are ascribed to the effect of ANS binding to the cationic (lysine and arginine) residues in the lipopeptide, which leads to a conformational change, as shown by circular dichroism, even at low concentrations below the actual CMC. Despite the small change in the peptide sequence (swapping of G and R residues), there is surprisingly a significant difference in the aggregation propensity and association number, both of which are greater for C<sub>16</sub>-CSK<sub>4</sub>GRDS. Both lipopeptides are cytocompatible (with fibroblasts and myoblasts) at low concentration, although cytotoxicity is noted at higher concentration.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"68713-68723"},"PeriodicalIF":8.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Amperometric Ozone Gas Sensing with Room-Temperature Ionic Liquids and Platinum-Based Electrodes
IF 9.5 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 DOI: 10.1021/acsami.4c18003
Huihui Zhang, Hsiang-Wei Yang, Chen-Wei Liu, Cheng Han, Kuan-Wen Wang, Sheng Dai
{"title":"Enhancing Amperometric Ozone Gas Sensing with Room-Temperature Ionic Liquids and Platinum-Based Electrodes","authors":"Huihui Zhang, Hsiang-Wei Yang, Chen-Wei Liu, Cheng Han, Kuan-Wen Wang, Sheng Dai","doi":"10.1021/acsami.4c18003","DOIUrl":"https://doi.org/10.1021/acsami.4c18003","url":null,"abstract":"Ozone (O<sub>3</sub>) poses serious health risks, prompting numerous countries to implement regulations that establish exposure limits and emission controls, for example, the air quality index (AQI) for O<sub>3</sub> ranging from 50 to 150 parts per billion (ppb), with natural levels at around 30 ppb. Electrochemical sensors are favored for detecting pollutant gases due to their high sensitivity, low cost, portability, energy efficiency, and capability for selective detection. In this study, we developed an O<sub>3</sub> sensor employing carbon-supported Pt-based binary and ternary nanorods (NRs) combined with room-temperature ionic liquids (RTILs) as electrolytes, aiming at highly sensitive and selective detection of O<sub>3</sub> at ppb levels. Initial screening of the O<sub>3</sub> sensing performance across different electrolytes identified H<sub>2</sub>SO<sub>4</sub> and [C<sub>4</sub>mpyrr][NTf<sub>2</sub>] (BMP) as the most sensitive options. BMP outperformed H<sub>2</sub>SO<sub>4</sub> in terms of linearity, selectivity, reproducibility, and response/recovery times, despite a relatively lower sensitivity. Electrochemical testing of Pt, PtAu, PtAg, and PtAuAg NR electrodes in BMP revealed that the addition of Au enhanced the linear response, while Ag improved sensitivity. Consequently, the ternary PtAuAg NR electrode exhibited the highest sensitivity (10.5 nA/ppm (parts per million)) and a broad detection range, fulfilling the AQI requirements for O<sub>3</sub>. The current response from the PtAuAg NR electrode closely aligned with results from an ultraviolet (UV) photometric analyzer, confirming its accuracy. Notably, this electrode contains only 20 wt % noble metals, which reduces the overall cost to just 11% of that of a traditional pure Au electrode.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"28 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Acidic Oxygen Evolution Reaction Performance by Anchoring Iridium Oxide Nanoparticles on Co3O4
IF 9.5 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 DOI: 10.1021/acsami.4c18974
Gege Tao, Zhiqiang Wang, Xiaohui Liu, Yanqin Wang, Yong Guo
{"title":"Enhanced Acidic Oxygen Evolution Reaction Performance by Anchoring Iridium Oxide Nanoparticles on Co3O4","authors":"Gege Tao, Zhiqiang Wang, Xiaohui Liu, Yanqin Wang, Yong Guo","doi":"10.1021/acsami.4c18974","DOIUrl":"https://doi.org/10.1021/acsami.4c18974","url":null,"abstract":"The sluggish kinetics of the anodic process, known as the oxygen evolution reaction (OER), has posed a significant challenge for the practical application of proton exchange membrane water electrolyzers in industrial settings. This study introduces a high-performance OER catalyst by anchoring iridium oxide nanoparticles (IrO<sub>2</sub>) onto a cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) substrate via a two-step combustion method. The resulting IrO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> catalyst demonstrates a significant enhancement in both catalytic activity and stability in acidic environments. Notably, the overpotential required to attain a current density of 10 mA cm<sup>–2</sup>, a commonly used benchmark for comparison, is merely 301 mV. Furthermore, stability is maintained over a duration of 80 h, as confirmed by the minimal rise in overpotential. Energy spectrum characterizations and experimental results reveal that the generation of OER-active Ir<sup>3+</sup> species on the IrO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> surface is induced by the strong interaction between IrO<sub>2</sub> and Co<sub>3</sub>O<sub>4</sub>. Theoretical calculations further indicate that IrO<sub>2</sub> sites loaded onto Co<sub>3</sub>O<sub>4</sub> have a lower energy barrier for *OOH deprotonation to form desorbed O<sub>2</sub>. Moreover, this interaction also stabilizes the iridium active sites by maintaining their chemical state, leading to superior long-term stability. These insights could significantly impact the strategies for designing and synthesizing more efficient OER electrocatalysts for broader industrial application.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"145 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nose-to-Brain Delivery of Biomimetic Nanoparticles for Glioblastoma Targeted Therapy
IF 9.5 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 DOI: 10.1021/acsami.4c16837
Natália Noronha Ferreira, Celisnolia Morais Leite, Natália Sanchez Moreno, Renata Rank Miranda, Paula Maria Pincela Lins, Camila Fernanda Rodero, Edilson de Oliveira Junior, Eliana Martins Lima, Rui M. Reis, Valtencir Zucolotto
{"title":"Nose-to-Brain Delivery of Biomimetic Nanoparticles for Glioblastoma Targeted Therapy","authors":"Natália Noronha Ferreira, Celisnolia Morais Leite, Natália Sanchez Moreno, Renata Rank Miranda, Paula Maria Pincela Lins, Camila Fernanda Rodero, Edilson de Oliveira Junior, Eliana Martins Lima, Rui M. Reis, Valtencir Zucolotto","doi":"10.1021/acsami.4c16837","DOIUrl":"https://doi.org/10.1021/acsami.4c16837","url":null,"abstract":"Glioblastoma (GBM) is an extremely aggressive form of brain cancer that remains challenging to treat, especially owing to the lack of effective targeting and drug delivery concerns. Due to its anatomical advantages, the nose-to-brain strategy is an interesting route for drug delivery. Nanoengineering has provided technological tools and innovative strategies to overcome biotechnological limitations, which is promising for improving the effectiveness of conventional therapies. Herein, we designed a biomimetic multifunctional nanostructure produced by polymeric poly(<span>d,l</span>-lactic-<i>co</i>-glycolic) acid (PLGA) core loaded with Temozolomide (TMZ) coated with cell membrane isolated from glioma cancer cells. The developed nanostructures (NP-MB) were fully characterized, and their biological performance was investigated extensively. The results indicate that NP-MB could control TMZ release and promote TMZ permeation in the <i>ex vivo</i> nasal porcine mucosa. The higher cytotoxicity of NP-MB in different glioma cell lines, particularly against U251 cells, reinforces their potential for homotypic targeting. The chicken chorioallantoic membrane assay revealed a tumor size reduction and antiangiogenic activity. <i>In vivo</i> biodistribution studies showed that NP-MB effectively reaches the brain following nasal administration. These findings suggest that NP-MB holds promise as a biomimetic nanoplatform for effective targeting and homotypic recognition in GBM therapy with high potential for clinical translation.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"12 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moiré Superlattice in Two-Dimensional Materials: Fundamentals, Applications, and Recent Developments. 二维材料中的 Moiré 超晶格:基础、应用和最新发展》。
IF 8.3 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-11-20 DOI: 10.1021/acsami.4c13135
Xinglong Zhang, Yihao Long, Ning Lu, Feiyu Jian, Xiaoyang Zhang, Zhiqiang Liang, Liang He, Hui Tang
{"title":"Moiré Superlattice in Two-Dimensional Materials: Fundamentals, Applications, and Recent Developments.","authors":"Xinglong Zhang, Yihao Long, Ning Lu, Feiyu Jian, Xiaoyang Zhang, Zhiqiang Liang, Liang He, Hui Tang","doi":"10.1021/acsami.4c13135","DOIUrl":"10.1021/acsami.4c13135","url":null,"abstract":"<p><p>Moiré superlattices, arising from the periodic Moiré patterns formed by two-dimensional (2D) materials stacked with a slight lattice mismatch, have attracted significant attention due to their unique electronic and optical performances. This review provides an overview of recent advances in Moiré superlattices, highlighting their formation mechanisms, structural characteristics, and emergent phenomena. First, we discuss the theoretical basis and experimental techniques employed in fabricating Moiré superlattices. Then we outline various characterization methods that enable the investigation of the structural and electronic performance of Moiré superlattices at the atomic scale. Afterward, we review the diverse range of emergent phenomena exhibited in Moiré superlattices. These phenomena include the appearance of electronic band engineering, unconventional superconductivity, and topologically nontrivial state. We explore how these phenomena arise from the interplay between the original electronic properties of the constituent materials and the Moiré pattern-induced modifications. Furthermore, we examine the potential applications of Moiré superlattices in fields such as electronics, optoelectronics, and quantum technologies. Finally, we summarize the challenges and directions in Moiré superlattice research, which include exploring more complex Moiré patterns, understanding the role of twist angle and strain engineering, and developing theoretical frameworks to describe the behaviors of Moiré systems. This review aims to provide a comprehensive understanding of the recent progress in Moiré superlattices, shedding light on their formation, performance, and potential applications. The insights gained from this research are expected to pave the way for the design and development of next-generation functional Moiré superlattices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"68724-68748"},"PeriodicalIF":8.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Performance and Stability of CsPbBr3 Perovskite Solar Cells Using Trioctylphosphine Oxide Additive.
IF 8.3 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-04 DOI: 10.1021/acsami.4c15862
Yan Zhao, Beili Pang, Shaojie Zheng, Xiangyu Kong, Mengyuan Zhao, Hongzhou Dong, Liyan Yu, Lifeng Dong
{"title":"Enhanced Performance and Stability of CsPbBr<sub>3</sub> Perovskite Solar Cells Using Trioctylphosphine Oxide Additive.","authors":"Yan Zhao, Beili Pang, Shaojie Zheng, Xiangyu Kong, Mengyuan Zhao, Hongzhou Dong, Liyan Yu, Lifeng Dong","doi":"10.1021/acsami.4c15862","DOIUrl":"10.1021/acsami.4c15862","url":null,"abstract":"<p><p>This study investigates the application of trioctylphosphine oxide (TOPO) and triphenylphosphine oxide (TPPO) as an additive to enhance the performance of all-inorganic CsPbBr<sub>3</sub> perovskite solar cells (PSCs). The addition of TOPO and TPPO passivates surface defects, increases grain size, and reduces surface trap states, leading to better light absorption and accelerated carrier transport. These modifications lead to an optimized energy level distribution, resulting in a significant increase in power conversion efficiency from 5.14 to 9.21% with TOPO and from 5.14% to 7.28% with TPPO. Furthermore, the long alkyl chains in TOPO provide effective isolation from air and water, significantly enhancing device stability for over 2400 h without packaging. The findings demonstrate that oxygen phosphine additives with long alkane chains are more effective in improving PSCs than those with aromatic hydrocarbons, offering new insights for the use of passivators in perovskite solar cells.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"69410-69417"},"PeriodicalIF":8.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterojunction Nanozyme Hydrogels Containing Cu-O-Zn Bonds with Strong Charge Transfer for Accelerated Diabetic Wound Healing.
IF 8.3 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-04 DOI: 10.1021/acsami.4c15715
Qiujiang Li, Xuanyu Xiao, Tianyou Yan, Dan Song, Lei Li, Zhiyu Chen, Yuting Zhong, Wei Deng, Xiaoyan Liu, Yueming Song, Lei Wang, Yunbing Wang
{"title":"Heterojunction Nanozyme Hydrogels Containing Cu-O-Zn Bonds with Strong Charge Transfer for Accelerated Diabetic Wound Healing.","authors":"Qiujiang Li, Xuanyu Xiao, Tianyou Yan, Dan Song, Lei Li, Zhiyu Chen, Yuting Zhong, Wei Deng, Xiaoyan Liu, Yueming Song, Lei Wang, Yunbing Wang","doi":"10.1021/acsami.4c15715","DOIUrl":"10.1021/acsami.4c15715","url":null,"abstract":"<p><p>The complex microenvironment of persistent inflammation and bacterial infection is a major challenge in chronic diabetic wounds. The development of nanozymes capable of efficiently scavenging reactive oxygen species (ROS) is a promising method to promote diabetic wound healing. However, many nanozymes show rather limited antioxidant activity and ROS-dependent antibacterial effects under certain circumstances, further weakening their ability to scavenge ROS. To meet these challenges, electronically regulated bioheterojunction (E-bio-HJ) nanozyme hydrogels derived from metal-organic frameworks (MOFs) were designed and prepared via an interface engineering strategy. Owing to the electron transfer and redistribution effects of the abundant and highly dispersed Cu-O-Zn sites at the heterogeneous interface, the E-bio-HJ nanozymes exhibited catalase (CAT)-like activity with ultrahigh hydrogen peroxide affinity (<i>K<sub>m</sub></i> = 25.76 mM) and sustained ROS consumption. In addition, owing to the enhanced interfacial effect of E-bio-HJ and the good biocompatibility and cell adhesion of the methacryloylated gelatin (Gel) hydrogel, the E-bio-HJ gelatin hydrogel (E-bio-HJ/Gel) further reduced inflammation by inducing macrophage transformation to the M2 phenotype, accompanied by excellent antimicrobial properties and enhanced cell migration, angiogenesis, and collagen deposition, which synergistically promoted diabetic wound healing. This highly effective and comprehensive strategy offers a new approach for the rapid healing of diabetic wounds.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"68950-68966"},"PeriodicalIF":8.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenothiazine Derivative-Based Photoinitiators for Ultrafast Sunlight-Induced Free Radical Polymerization and Rapid Precision 3D Printing.
IF 8.3 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-04 DOI: 10.1021/acsami.4c18660
Tong Gao, Zheng Liu, Ji Feng, Céline Dietlin, Fabrice Morlet-Savary, Jing Zhang, Wenpeng Shan, Frédéric Dumur, Pu Xiao, Jacques Lalevée
{"title":"Phenothiazine Derivative-Based Photoinitiators for Ultrafast Sunlight-Induced Free Radical Polymerization and Rapid Precision 3D Printing.","authors":"Tong Gao, Zheng Liu, Ji Feng, Céline Dietlin, Fabrice Morlet-Savary, Jing Zhang, Wenpeng Shan, Frédéric Dumur, Pu Xiao, Jacques Lalevée","doi":"10.1021/acsami.4c18660","DOIUrl":"10.1021/acsami.4c18660","url":null,"abstract":"<p><p>In this work, we introduce twenty-six phenothiazine derivatives (PTZs) that were designed and synthesized as visible light photoinitiators. These compounds, in combination with an amine [ethyl 4-(dimethylamino)benzoate (EDB)] and an iodonium salt [di-<i>tert</i>-butylphenyl iodonium hexafluorophosphate (Iod)], could furnish high-performance three-component (PTZs/EDB/Iod) photoinitiating systems that were employed for the free radical polymerization of thick films of a low-viscosity model acrylate resin, namely, trimethylolpropane triacrylate (TMPTA) under visible light and sunlight exposure. A commercial thioxanthone, i.e., isopropylthioxanthone (ITX) was selected to design a reference ITX/EDB/Iod photoinitiating system. Double bond conversions of 87% and 76% were measured for the developed and synthesized photoinitiating systems under 405 and 450 nm light-emitting diode irradiation, respectively, and a conversion as high as 70% could be determined under sunlight irradiation─about 23 times higher than the conversion obtained with the comparable system prepared with the commercial photoinitiator. The relevant photoinitiation abilities and photochemical mechanisms are comprehensively investigated by a combination of techniques including real-time Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, fluorescence spectroscopy, steady-state photolysis, cyclic voltammetry, and electron paramagnetic resonance. Notably, the exceptional performance of the photoinitiators enabled the fabrication of 3D objects with precise morphology and superior resolution through 3D printing and direct laser write techniques. These findings not only provide opportunities for efficient polymerization under artificial and natural light conditions but also pave the way for scalable, cost-effective, environmentally sustainable, and green chemistry-driven curing applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"69984-69998"},"PeriodicalIF":8.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Functionalized Injectable pH-Responsive Hydrogels Loaded with Magnesium Peroxide for the Treatment of Implant-Associated Infection.
IF 8.3 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-08 DOI: 10.1021/acsami.4c10912
Ziyue Peng, Yuqi Du, Mingrui Song, Chongkai Sun, Yuan Xu, Jikun Qian, Xin Guan, Mankai Yang, Xin Zhang, Fangfang Dai, Haoyang Wan, Yuhang Chen, Chun Liu, Bin Yu
{"title":"Dual-Functionalized Injectable pH-Responsive Hydrogels Loaded with Magnesium Peroxide for the Treatment of Implant-Associated Infection.","authors":"Ziyue Peng, Yuqi Du, Mingrui Song, Chongkai Sun, Yuan Xu, Jikun Qian, Xin Guan, Mankai Yang, Xin Zhang, Fangfang Dai, Haoyang Wan, Yuhang Chen, Chun Liu, Bin Yu","doi":"10.1021/acsami.4c10912","DOIUrl":"10.1021/acsami.4c10912","url":null,"abstract":"<p><p>Implant-associated infections frequently complicate orthopedic surgeries, resulting in challenging issues. The current therapy of antibiotic treatment and surgical debridement often leads to drug resistance and bone defect. The development of pH-responsive antimicrobial and pro-osteogenic materials is a promising approach to controlling infections and repairing infected bone defects, especially given the weakly acidic pH of the bacterial infection area. Solid peroxides have the potential to provide a sustained release of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), rendering them applicable for antimicrobial purposes. Additionally, their chemical properties render them inherently responsive to pH. Here, we propose a novel GelBA/PVA/MgO<sub>2</sub> hydrogel composed of gelatin (Gel), benzeneboronic acid (BA), poly(vinyl alcohol) (PVA), and magnesium peroxide (MgO<sub>2</sub>) with self-healing ability and pH-responsiveness. The borate ester bond formed between PVA and BA is a dynamic chemical bond with properties of dynamic formation and dissociation, making the hydrogel both self-healable and pH-responsive. Meanwhile, the addition of MgO<sub>2</sub> improves the network structure of the hydrogel and gives the hydrogel the ability to perform sustained release of H<sub>2</sub>O<sub>2</sub> and Mg<sup>2+</sup>. Experimentally, the GelBA/PVA/MgO<sub>2</sub> hydrogel exhibits controlled and pH-dependent H<sub>2</sub>O<sub>2</sub> and Mg<sup>2+</sup> release, sustained over time at physiological pH (7.4) and significantly increased at infection pH (5.5). In vitro and in vivo outcomes revealed that this hydrogel is able to inhibit <i>Staphylococcus aureus</i> growth and accelerate bone regeneration, improving bone healing without cytotoxic effects on normal tissues. These findings suggest that the GelBA/PVA/MgO<sub>2</sub> hydrogel is a unique and efficient approach for anti-infection and therapeutic implant-associated infections.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"68794-68815"},"PeriodicalIF":8.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信