高性能4D打印ABS/导电TPU电热致动器器件与swcnts分离结构:夹具演示向软机器人应用。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-07-23 Epub Date: 2025-07-11 DOI:10.1021/acsami.5c09083
Miron Krassas, Emmanouil Porfyrakis, Fivos Simopoulos, Georgios Kampourakis, Papadakis Ch Nikolaos, Stavros Katsiaounis, Konstantinos Papagelis, George Karalis, John D Kechagias, Evangelos K Evangelou, Panagiotis Polygerinos, Lazaros Tzounis
{"title":"高性能4D打印ABS/导电TPU电热致动器器件与swcnts分离结构:夹具演示向软机器人应用。","authors":"Miron Krassas, Emmanouil Porfyrakis, Fivos Simopoulos, Georgios Kampourakis, Papadakis Ch Nikolaos, Stavros Katsiaounis, Konstantinos Papagelis, George Karalis, John D Kechagias, Evangelos K Evangelou, Panagiotis Polygerinos, Lazaros Tzounis","doi":"10.1021/acsami.5c09083","DOIUrl":null,"url":null,"abstract":"<p><p>A high-performance U-shaped bimetallic polymer-based \"soft\" electrothermal actuator (ETA) device is reported utilizing a versatile fused filament fabrication (FFF) three-dimensional printing (3DP) process. A dual-head multimaterial 3D printer is employed to fabricate the ETA devices, consisting of an acrylonitrile butadiene styrene (ABS)/conductive thermoplastic polyurethane (cTPU) bilayer architecture. The cTPU layer is intentionally printed with a gyroid microporous structure, facilitating the infiltration of a single-walled carbon nanotube (SWCNT) aqueous ink, deposited through \"direct ink writing\" (DIW). The final 4D printed ABS/cTPU/SWCNT ETA could reach orders of magnitude lower internal resistance compared to the \"cTPU only\" layer, namely, from ca. 9 kΩ to ∼20 Ω. Scanning electron microscopy (SEM), Raman spectroscopy, thermogravimetric analysis (TGA), and electrical resistance measurements highlight the morphological and physicochemical properties of the obtained electrothermally active materials and structures. 4DP ETAs are characterized for their actuation bending performance upon being exposed to different applied bias voltages (<i>V</i><sub>bias</sub>) and \"ON-OFF\" alternating cycles, measuring in real time the tip displacement through a high-resolution camera. Finite element analysis (FEA) corroborates the ETA device performance for a specific <i>V</i><sub>bias</sub>. The force generated by the ETAs is quantified via a digital microbalance, while infrared thermography (IR-T) images are captured upon device operation to validate the electrothermal Joule-heating effect. Three ETA devices are electrically connected in parallel to a three-finger \"soft\" gripper demonstrator. Our 4DP ETAs could have a modular design for variable applications, while the fast and reliably responsive gripper prototype could open new avenues in the field of soft robotics.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"42331-42347"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance 4D Printed ABS/Conductive TPU Electrothermal Actuator Devices with SWCNT Segregated Structures: A Gripper Demonstrator toward Soft Robotics Applications.\",\"authors\":\"Miron Krassas, Emmanouil Porfyrakis, Fivos Simopoulos, Georgios Kampourakis, Papadakis Ch Nikolaos, Stavros Katsiaounis, Konstantinos Papagelis, George Karalis, John D Kechagias, Evangelos K Evangelou, Panagiotis Polygerinos, Lazaros Tzounis\",\"doi\":\"10.1021/acsami.5c09083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A high-performance U-shaped bimetallic polymer-based \\\"soft\\\" electrothermal actuator (ETA) device is reported utilizing a versatile fused filament fabrication (FFF) three-dimensional printing (3DP) process. A dual-head multimaterial 3D printer is employed to fabricate the ETA devices, consisting of an acrylonitrile butadiene styrene (ABS)/conductive thermoplastic polyurethane (cTPU) bilayer architecture. The cTPU layer is intentionally printed with a gyroid microporous structure, facilitating the infiltration of a single-walled carbon nanotube (SWCNT) aqueous ink, deposited through \\\"direct ink writing\\\" (DIW). The final 4D printed ABS/cTPU/SWCNT ETA could reach orders of magnitude lower internal resistance compared to the \\\"cTPU only\\\" layer, namely, from ca. 9 kΩ to ∼20 Ω. Scanning electron microscopy (SEM), Raman spectroscopy, thermogravimetric analysis (TGA), and electrical resistance measurements highlight the morphological and physicochemical properties of the obtained electrothermally active materials and structures. 4DP ETAs are characterized for their actuation bending performance upon being exposed to different applied bias voltages (<i>V</i><sub>bias</sub>) and \\\"ON-OFF\\\" alternating cycles, measuring in real time the tip displacement through a high-resolution camera. Finite element analysis (FEA) corroborates the ETA device performance for a specific <i>V</i><sub>bias</sub>. The force generated by the ETAs is quantified via a digital microbalance, while infrared thermography (IR-T) images are captured upon device operation to validate the electrothermal Joule-heating effect. Three ETA devices are electrically connected in parallel to a three-finger \\\"soft\\\" gripper demonstrator. Our 4DP ETAs could have a modular design for variable applications, while the fast and reliably responsive gripper prototype could open new avenues in the field of soft robotics.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"42331-42347\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c09083\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c09083","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

报道了一种高性能u型双金属聚合物“软”电热致动器(ETA)装置,该装置利用多功能熔丝制造(FFF)三维打印(3DP)工艺。采用双头多材料3D打印机制造ETA器件,该器件由丙烯腈-丁二烯-苯乙烯(ABS)/导电热塑性聚氨酯(cTPU)双层结构组成。cTPU层被有意地印刷成一个旋转微孔结构,促进单壁碳纳米管(SWCNT)水性油墨的渗透,通过“直接墨水书写”(DIW)沉积。最终的4D打印ABS/cTPU/ swcnts ETA与“仅cTPU”层相比,内阻可以降低几个数量级,即从约9 kΩ到约20 Ω。扫描电子显微镜(SEM),拉曼光谱,热重分析(TGA)和电阻测量突出了所获得的电热活性材料和结构的形态和物理化学性质。4DP ETAs的特点是在暴露于不同的施加偏置电压(Vbias)和“ON-OFF”交替周期时具有驱动弯曲性能,通过高分辨率相机实时测量尖端位移。有限元分析(FEA)证实了特定Vbias下ETA器件的性能。ETAs产生的力通过数字微天平量化,而红外热成像(IR-T)图像在设备运行时被捕获,以验证电热焦耳加热效应。三个ETA设备与一个三指“软”抓手演示器并联。我们的4DP ETAs可以采用模块化设计,适用于各种应用,而快速可靠响应的夹具原型可以在软机器人领域开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Performance 4D Printed ABS/Conductive TPU Electrothermal Actuator Devices with SWCNT Segregated Structures: A Gripper Demonstrator toward Soft Robotics Applications.

A high-performance U-shaped bimetallic polymer-based "soft" electrothermal actuator (ETA) device is reported utilizing a versatile fused filament fabrication (FFF) three-dimensional printing (3DP) process. A dual-head multimaterial 3D printer is employed to fabricate the ETA devices, consisting of an acrylonitrile butadiene styrene (ABS)/conductive thermoplastic polyurethane (cTPU) bilayer architecture. The cTPU layer is intentionally printed with a gyroid microporous structure, facilitating the infiltration of a single-walled carbon nanotube (SWCNT) aqueous ink, deposited through "direct ink writing" (DIW). The final 4D printed ABS/cTPU/SWCNT ETA could reach orders of magnitude lower internal resistance compared to the "cTPU only" layer, namely, from ca. 9 kΩ to ∼20 Ω. Scanning electron microscopy (SEM), Raman spectroscopy, thermogravimetric analysis (TGA), and electrical resistance measurements highlight the morphological and physicochemical properties of the obtained electrothermally active materials and structures. 4DP ETAs are characterized for their actuation bending performance upon being exposed to different applied bias voltages (Vbias) and "ON-OFF" alternating cycles, measuring in real time the tip displacement through a high-resolution camera. Finite element analysis (FEA) corroborates the ETA device performance for a specific Vbias. The force generated by the ETAs is quantified via a digital microbalance, while infrared thermography (IR-T) images are captured upon device operation to validate the electrothermal Joule-heating effect. Three ETA devices are electrically connected in parallel to a three-finger "soft" gripper demonstrator. Our 4DP ETAs could have a modular design for variable applications, while the fast and reliably responsive gripper prototype could open new avenues in the field of soft robotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信