{"title":"基于深度共晶溶剂静电纺丝和硅模板刻蚀的木质素衍生分层多孔碳纳米纤维用于高性能超级电容器。","authors":"Yuchen Wang,Shuangli Wu,Shanlei Chang,Kai Rong,Shaojun Dong","doi":"10.1021/acsami.5c10539","DOIUrl":null,"url":null,"abstract":"The valorization of lignin, an abundant and renewable resource, remains pivotal to advancing sustainable material innovation. Herein, we propose a green and cost-effective strategy for synthesizing lignin-derived hierarchically porous carbon nanofibers (HPCFs). This approach utilized choline chloride-lactic acid deep eutectic solvent (ChCl-LA DES) for lignin dissolution, followed by wet-electrospinning to fabricate lignin-based fiber aerogels. SiO2 nanospheres were uniformly embedded within electrospun fibers as sacrificial templates to create macropores, and the lignin carbonization generated abundant mesopores and micropores, ultimately producing carbon nanofibers with multiscale pore architectures. Furthermore, the hierarchical pore distribution can be tuned by modulating the SiO2 nanosphere content, which in turn optimized the textural properties and electrochemical performance of the carbon nanofibers. The optimized carbon nanofibers doped with 100 mg of SiO2 nanospheres (100-HPCF) exhibited distinct improvement in specific surface area (779.515 m2/g) and specific capacitance (237.1 F/g at 0.5 A/g), representing a marked improvement over nontemplated lignin-derived electrospun carbon fibers (LESCFs). Moreover, 100-HPCF demonstrated exceptional cycling stability, retaining 97.7% of its peak capacitance after 15000 cycles. The integration of lignin valorization, DES-enabled processing, and hierarchical pore-structure optimization establishes a sustainable and viable pathway for developing advanced carbon materials with exceptional supercapacitor performance.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"25 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lignin-Derived Hierarchically Porous Carbon Nanofibers via Deep Eutectic Solvent Electrospinning and Silica-Templated Etching for High-Performance Supercapacitors.\",\"authors\":\"Yuchen Wang,Shuangli Wu,Shanlei Chang,Kai Rong,Shaojun Dong\",\"doi\":\"10.1021/acsami.5c10539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The valorization of lignin, an abundant and renewable resource, remains pivotal to advancing sustainable material innovation. Herein, we propose a green and cost-effective strategy for synthesizing lignin-derived hierarchically porous carbon nanofibers (HPCFs). This approach utilized choline chloride-lactic acid deep eutectic solvent (ChCl-LA DES) for lignin dissolution, followed by wet-electrospinning to fabricate lignin-based fiber aerogels. SiO2 nanospheres were uniformly embedded within electrospun fibers as sacrificial templates to create macropores, and the lignin carbonization generated abundant mesopores and micropores, ultimately producing carbon nanofibers with multiscale pore architectures. Furthermore, the hierarchical pore distribution can be tuned by modulating the SiO2 nanosphere content, which in turn optimized the textural properties and electrochemical performance of the carbon nanofibers. The optimized carbon nanofibers doped with 100 mg of SiO2 nanospheres (100-HPCF) exhibited distinct improvement in specific surface area (779.515 m2/g) and specific capacitance (237.1 F/g at 0.5 A/g), representing a marked improvement over nontemplated lignin-derived electrospun carbon fibers (LESCFs). Moreover, 100-HPCF demonstrated exceptional cycling stability, retaining 97.7% of its peak capacitance after 15000 cycles. The integration of lignin valorization, DES-enabled processing, and hierarchical pore-structure optimization establishes a sustainable and viable pathway for developing advanced carbon materials with exceptional supercapacitor performance.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c10539\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c10539","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Lignin-Derived Hierarchically Porous Carbon Nanofibers via Deep Eutectic Solvent Electrospinning and Silica-Templated Etching for High-Performance Supercapacitors.
The valorization of lignin, an abundant and renewable resource, remains pivotal to advancing sustainable material innovation. Herein, we propose a green and cost-effective strategy for synthesizing lignin-derived hierarchically porous carbon nanofibers (HPCFs). This approach utilized choline chloride-lactic acid deep eutectic solvent (ChCl-LA DES) for lignin dissolution, followed by wet-electrospinning to fabricate lignin-based fiber aerogels. SiO2 nanospheres were uniformly embedded within electrospun fibers as sacrificial templates to create macropores, and the lignin carbonization generated abundant mesopores and micropores, ultimately producing carbon nanofibers with multiscale pore architectures. Furthermore, the hierarchical pore distribution can be tuned by modulating the SiO2 nanosphere content, which in turn optimized the textural properties and electrochemical performance of the carbon nanofibers. The optimized carbon nanofibers doped with 100 mg of SiO2 nanospheres (100-HPCF) exhibited distinct improvement in specific surface area (779.515 m2/g) and specific capacitance (237.1 F/g at 0.5 A/g), representing a marked improvement over nontemplated lignin-derived electrospun carbon fibers (LESCFs). Moreover, 100-HPCF demonstrated exceptional cycling stability, retaining 97.7% of its peak capacitance after 15000 cycles. The integration of lignin valorization, DES-enabled processing, and hierarchical pore-structure optimization establishes a sustainable and viable pathway for developing advanced carbon materials with exceptional supercapacitor performance.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.