利用纳米银的工程光学特性设计抗菌辐射冷却装置。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dae Yang Oh, Mun Hwan Lee, Hangyu Lim, Sang Yeop Lee, Jihyae Choo, Awais Ali, Seongkeun Oh, Junhyeok Park, Jaein Park, Byung Ku Jung, Seongyong Hong, Seongwoo Park, Heon Lee, Ju Hun Lee, Soong Ju Oh
{"title":"利用纳米银的工程光学特性设计抗菌辐射冷却装置。","authors":"Dae Yang Oh, Mun Hwan Lee, Hangyu Lim, Sang Yeop Lee, Jihyae Choo, Awais Ali, Seongkeun Oh, Junhyeok Park, Jaein Park, Byung Ku Jung, Seongyong Hong, Seongwoo Park, Heon Lee, Ju Hun Lee, Soong Ju Oh","doi":"10.1021/acsami.5c12828","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of radiative cooling and antibacterial functionality into a single-material platform is a promising strategy for addressing the dual global challenges of climate-induced heat stress and microbial contamination risks. An antibacterial radiative cooling device (ARCD) is developed in this study by constructing a triple-layer structure consisting of a top layer of Ag nanoparticles (Ag NPs) for antibacterial action, a polydimethylsiloxane middle layer for mid-infrared thermal emission, and a bottom Ag thin film for visible light reflection. The ligand-exchanged Ag-1,4-butanedithiol (BDT) NPs ensure strong interfacial adhesion and robust antibacterial performance, achieving >99.99% bacterial reduction for both <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. The optimized ARCD containing 0.1 mg·mL<sup>-1</sup> Ag-BDT NPs exhibits a subambient cooling of up to 3.7 °C under outdoor conditions while maintaining effective antibacterial efficacy. Furthermore, the device is functionalized with nontoxic green-emitting InP quantum dots to enable photoluminescent radiative cooling and aesthetic versatility. The resulting luminescent antibacterial cooling tumbler exhibits real-world applicability with a 6.8 °C reduction in water temperature and sustained antimicrobial activity. This study highlights the potential of multifunctional ARCDs as next-generation materials for sustainable thermal management and hygiene protection in built environments and consumer products.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing an Antibacterial Radiative Cooling Device with the Engineering Optical Properties of Silver Nanoparticles.\",\"authors\":\"Dae Yang Oh, Mun Hwan Lee, Hangyu Lim, Sang Yeop Lee, Jihyae Choo, Awais Ali, Seongkeun Oh, Junhyeok Park, Jaein Park, Byung Ku Jung, Seongyong Hong, Seongwoo Park, Heon Lee, Ju Hun Lee, Soong Ju Oh\",\"doi\":\"10.1021/acsami.5c12828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of radiative cooling and antibacterial functionality into a single-material platform is a promising strategy for addressing the dual global challenges of climate-induced heat stress and microbial contamination risks. An antibacterial radiative cooling device (ARCD) is developed in this study by constructing a triple-layer structure consisting of a top layer of Ag nanoparticles (Ag NPs) for antibacterial action, a polydimethylsiloxane middle layer for mid-infrared thermal emission, and a bottom Ag thin film for visible light reflection. The ligand-exchanged Ag-1,4-butanedithiol (BDT) NPs ensure strong interfacial adhesion and robust antibacterial performance, achieving >99.99% bacterial reduction for both <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. The optimized ARCD containing 0.1 mg·mL<sup>-1</sup> Ag-BDT NPs exhibits a subambient cooling of up to 3.7 °C under outdoor conditions while maintaining effective antibacterial efficacy. Furthermore, the device is functionalized with nontoxic green-emitting InP quantum dots to enable photoluminescent radiative cooling and aesthetic versatility. The resulting luminescent antibacterial cooling tumbler exhibits real-world applicability with a 6.8 °C reduction in water temperature and sustained antimicrobial activity. This study highlights the potential of multifunctional ARCDs as next-generation materials for sustainable thermal management and hygiene protection in built environments and consumer products.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c12828\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c12828","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将辐射冷却和抗菌功能集成到单一材料平台中是解决气候引起的热应激和微生物污染风险的双重全球挑战的有前途的策略。本研究通过构建三层结构,即表层银纳米粒子(Ag NPs)用于抗菌,中间层聚二甲基硅氧烷用于中红外热发射,底层银薄膜用于可见光反射,开发了一种抗菌辐射冷却装置(ARCD)。配体交换的ag -1,4-丁二硫醇(BDT) NPs具有较强的界面粘附性和较强的抗菌性能,对大肠杆菌和金黄色葡萄球菌的细菌减少率均达到99.99%。优化后的ARCD含有0.1 mg·mL-1 Ag-BDT NPs,在室外条件下,亚环境冷却温度可达3.7°C,同时保持有效的抗菌效果。此外,该器件采用无毒的绿色发光InP量子点功能化,从而实现光致发光辐射冷却和美学上的多功能性。由此产生的发光抗菌冷却杯具有实际适用性,水温降低6.8°C,并具有持续的抗菌活性。这项研究强调了多功能arcd作为建筑环境和消费产品中可持续热管理和卫生保护的下一代材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing an Antibacterial Radiative Cooling Device with the Engineering Optical Properties of Silver Nanoparticles.

The integration of radiative cooling and antibacterial functionality into a single-material platform is a promising strategy for addressing the dual global challenges of climate-induced heat stress and microbial contamination risks. An antibacterial radiative cooling device (ARCD) is developed in this study by constructing a triple-layer structure consisting of a top layer of Ag nanoparticles (Ag NPs) for antibacterial action, a polydimethylsiloxane middle layer for mid-infrared thermal emission, and a bottom Ag thin film for visible light reflection. The ligand-exchanged Ag-1,4-butanedithiol (BDT) NPs ensure strong interfacial adhesion and robust antibacterial performance, achieving >99.99% bacterial reduction for both Escherichia coli and Staphylococcus aureus. The optimized ARCD containing 0.1 mg·mL-1 Ag-BDT NPs exhibits a subambient cooling of up to 3.7 °C under outdoor conditions while maintaining effective antibacterial efficacy. Furthermore, the device is functionalized with nontoxic green-emitting InP quantum dots to enable photoluminescent radiative cooling and aesthetic versatility. The resulting luminescent antibacterial cooling tumbler exhibits real-world applicability with a 6.8 °C reduction in water temperature and sustained antimicrobial activity. This study highlights the potential of multifunctional ARCDs as next-generation materials for sustainable thermal management and hygiene protection in built environments and consumer products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信