园艺研究(英文)最新文献

筛选
英文 中文
The jacktree genome and population genomics provides insights for the mechanisms of the germination obstacle and the conservation of endangered ornamental plants. 千层塔基因组和种群基因组学为濒危观赏植物的发芽障碍机制和保护提供了启示。
IF 7.6
园艺研究(英文) Pub Date : 2024-06-18 eCollection Date: 2024-08-01 DOI: 10.1093/hr/uhae166
Sheng Zhu, Xue-Fen Wei, Yu-Xin Lu, Dao-Wu Zhang, Ze-Fu Wang, Jing Ge, Sheng-Lian Li, Yan-Feng Song, Yong Yang, Xian-Gui Yi, Min Zhang, Jia-Yu Xue, Yi-Fan Duan
{"title":"The jacktree genome and population genomics provides insights for the mechanisms of the germination obstacle and the conservation of endangered ornamental plants.","authors":"Sheng Zhu, Xue-Fen Wei, Yu-Xin Lu, Dao-Wu Zhang, Ze-Fu Wang, Jing Ge, Sheng-Lian Li, Yan-Feng Song, Yong Yang, Xian-Gui Yi, Min Zhang, Jia-Yu Xue, Yi-Fan Duan","doi":"10.1093/hr/uhae166","DOIUrl":"10.1093/hr/uhae166","url":null,"abstract":"<p><p><i>Sinojackia</i> Hu represents the first woody genus described by Chinese botanists, with all species classified as endangered ornamental plants endemic to China. Their characteristic spindle-shaped fruits confer high ornamental value to the plants, making them favored in gardens and parks. Nevertheless, the fruits likely pose a germination obstacle, contributing to the endangered status of this lineage. Here we report the chromosome-scale genome of <i>S. xylocarpa</i>, and explore the mechanisms underlying its endangered status, as well as its population dynamics throughout evolution. Population genomic analysis has indicated that <i>S. xylocarpa</i> experienced a bottleneck effect following the recent glacial period, leading to a continuous population reduction. Examination of the pericarp composition across six stages of fruit development revealed a consistent increase in the accumulation of lignin and fiber content, responsible for the sturdiness of mature fruits' pericarps. At molecular level, enhanced gene expression in the biosynthesis of lignin, cellulose and hemicellulose was detected in pericarps. Therefore, we conclude that the highly lignified and fibrotic pericarps of <i>S. xylocarpa</i>, which inhibit its seed germination, should be its threatening mechanism, thus proposing corresponding strategies for improved conservation and restoration. This study serves as a seminal contribution to conservation biology, offering valuable insights for the study of other endangered ornamental plants.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 8","pages":"uhae166"},"PeriodicalIF":7.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction of: Lipidomics, transcription analysis, and hormone profiling unveil the role of CsLOX6 in MeJA biosynthesis during black tea processing. 撤回:脂质组学、转录分析和激素分析揭示了 CsLOX6 在红茶加工过程中 MeJA 生物合成中的作用。
园艺研究(英文) Pub Date : 2024-06-03 eCollection Date: 2024-06-01 DOI: 10.1093/hr/uhae146
{"title":"Retraction of: Lipidomics, transcription analysis, and hormone profiling unveil the role of <i>CsLOX6</i> in MeJA biosynthesis during black tea processing.","authors":"","doi":"10.1093/hr/uhae146","DOIUrl":"https://doi.org/10.1093/hr/uhae146","url":null,"abstract":"<p><p>[This retracts the article DOI: 10.1093/hr/uhae032.].</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 6","pages":"uhae146"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel tomato interspecific (Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium) MAGIC population facilitates trait association and candidate gene discovery in untapped exotic germplasm. 一个新型番茄种间(Solanum lycopersicum var.
IF 7.6
园艺研究(英文) Pub Date : 2024-06-03 eCollection Date: 2024-07-01 DOI: 10.1093/hr/uhae154
Andrea Arrones, Oussama Antar, Leandro Pereira-Dias, Andrea Solana, Paola Ferrante, Giuseppe Aprea, Mariola Plazas, Jaime Prohens, María José Díez, Giovanni Giuliano, Pietro Gramazio, Santiago Vilanova
{"title":"A novel tomato interspecific (<i>Solanum lycopersicum</i> var. <i>cerasiforme</i> and <i>Solanum pimpinellifolium</i>) MAGIC population facilitates trait association and candidate gene discovery in untapped exotic germplasm.","authors":"Andrea Arrones, Oussama Antar, Leandro Pereira-Dias, Andrea Solana, Paola Ferrante, Giuseppe Aprea, Mariola Plazas, Jaime Prohens, María José Díez, Giovanni Giuliano, Pietro Gramazio, Santiago Vilanova","doi":"10.1093/hr/uhae154","DOIUrl":"10.1093/hr/uhae154","url":null,"abstract":"<p><p>We developed a novel eight-way tomato multiparental advanced generation intercross (MAGIC) population to improve the accessibility of tomato relatives genetic resources to geneticists and breeders. The interspecific tomato MAGIC population (ToMAGIC) was obtained by intercrossing four accessions each of <i>Solanum lycopersicum</i> var. <i>cerasiforme</i> and <i>Solanum pimpinellifolium</i>, which are the weedy relative and the ancestor of cultivated tomato, respectively. The eight exotic ToMAGIC founders were selected based on a representation of the genetic diversity and geographical distribution of the two taxa. The resulting MAGIC population comprises 354 lines, which were genotyped using a new 12k tomato single primer enrichment technology panel and yielded 6488 high-quality single-nucleotide polymorphism (SNPs). The genotyping data revealed a high degree of homozygosity, an absence of genetic structure, and a balanced representation of the founder genomes. To evaluate the potential of the ToMAGIC population, a proof of concept was conducted by phenotyping it for fruit size, plant pigmentation, leaf morphology, and earliness. Genome-wide association studies identified strong associations for the studied traits, pinpointing both previously identified and novel candidate genes near or within the linkage disequilibrium blocks. Domesticated alleles for fruit size were recessive and were found, at low frequencies, in wild/ancestral populations. Our findings demonstrate that the newly developed ToMAGIC population is a valuable resource for genetic research in tomato, offering significant potential for identifying new genes that govern key traits in tomato. ToMAGIC lines displaying a pyramiding of traits of interest could have direct applicability for integration into breeding pipelines providing untapped variation for tomato breeding.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 7","pages":"uhae154"},"PeriodicalIF":7.6,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome assembly and resequencing shed light on evolution, population selection, and sex identification in Vernicia montana. 基因组组装和重新测序揭示了 Vernicia montana 的进化、种群选择和性别鉴定。
IF 7.6
园艺研究(英文) Pub Date : 2024-05-18 eCollection Date: 2024-07-01 DOI: 10.1093/hr/uhae141
Wenying Li, Xiang Dong, Xingtan Zhang, Jie Cao, Meilan Liu, Xu Zhou, Hongxu Long, Heping Cao, Hai Lin, Lin Zhang
{"title":"Genome assembly and resequencing shed light on evolution, population selection, and sex identification in <i>Vernicia montana</i>.","authors":"Wenying Li, Xiang Dong, Xingtan Zhang, Jie Cao, Meilan Liu, Xu Zhou, Hongxu Long, Heping Cao, Hai Lin, Lin Zhang","doi":"10.1093/hr/uhae141","DOIUrl":"10.1093/hr/uhae141","url":null,"abstract":"<p><p><i>Vernicia montana</i> is a dioecious plant widely cultivated for high-quality tung oil production and ornamental purposes in the Euphorbiaceae family. The lack of genomic information has severely hindered molecular breeding for genetic improvement and early sex identification in <i>V. montana</i>. Here, we present a chromosome-level reference genome of a male <i>V. montana</i> with a total size of 1.29 Gb and a contig N50 of 3.69 Mb. Genome analysis revealed that different repeat lineages drove the expansion of genome size. The model of chromosome evolution in the Euphorbiaceae family suggests that polyploidization-induced genomic structural variation reshaped the chromosome structure, giving rise to the diverse modern chromosomes. Based on whole-genome resequencing data and analyses of selective sweep and genetic diversity, several genes associated with stress resistance and flavonoid synthesis such as CYP450 genes and members of the LRR-RLK family, were identified and presumed to have been selected during the evolutionary process. Genome-wide association studies were conducted and a putative sex-linked insertion and deletion (InDel) (Chr 2: 102 799 917-102 799 933 bp) was identified and developed as a polymorphic molecular marker capable of effectively detecting the gender of <i>V. montana</i>. This InDel is located in the second intron of <i>VmBASS4</i>, suggesting a possible role of <i>VmBASS4</i> in sex determination in <i>V. montana.</i> This study sheds light on the genome evolution and sex identification of <i>V. montana</i>, which will facilitate research on the development of agronomically important traits and genomics-assisted breeding.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 7","pages":"uhae141"},"PeriodicalIF":7.6,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coping with alpine habitats: genomic insights into the adaptation strategies of Triplostegia glandulifera (Caprifoliaceae). 应对高山栖息地:从基因组学角度了解毛果芸香科植物 Triplostegia glandulifera 的适应策略。
园艺研究(英文) Pub Date : 2024-05-01 DOI: 10.1093/hr/uhae077
Jian Zhang, Kai-Lin Dong, Miao-Zhen Ren, Zhi-Wen Wang, Jian-Hua Li, Wen-Jing Sun, Xiang Zhao, Xin-Xing Fu, Jian-Fei Ye, Bing Liu, Da-Ming Zhang, Mo-Zhu Wang, Gang Zeng, Yan-Ting Niu, Li-Min Lu, Jun-Xia Su, Zhong-Jian Liu, Pamela S Soltis, Douglas E Soltis, Zhi-Duan Chen
{"title":"Coping with alpine habitats: genomic insights into the adaptation strategies of <i>Triplostegia glandulifera</i> (Caprifoliaceae).","authors":"Jian Zhang, Kai-Lin Dong, Miao-Zhen Ren, Zhi-Wen Wang, Jian-Hua Li, Wen-Jing Sun, Xiang Zhao, Xin-Xing Fu, Jian-Fei Ye, Bing Liu, Da-Ming Zhang, Mo-Zhu Wang, Gang Zeng, Yan-Ting Niu, Li-Min Lu, Jun-Xia Su, Zhong-Jian Liu, Pamela S Soltis, Douglas E Soltis, Zhi-Duan Chen","doi":"10.1093/hr/uhae077","DOIUrl":"10.1093/hr/uhae077","url":null,"abstract":"<p><p>How plants find a way to thrive in alpine habitats remains largely unknown. Here we present a chromosome-level genome assembly for an alpine medicinal herb, <i>Triplostegia glandulifera</i> (Caprifoliaceae), and 13 transcriptomes from other species of Dipsacales. We detected a whole-genome duplication event in <i>T. glandulifera</i> that occurred prior to the diversification of Dipsacales. Preferential gene retention after whole-genome duplication was found to contribute to increasing cold-related genes in <i>T. glandulifera</i>. A series of genes putatively associated with alpine adaptation (e.g. <i>CBF</i>s, <i>ERF-VII</i>s, and <i>RAD51C</i>) exhibited higher expression levels in <i>T. glandulifera</i> than in its low-elevation relative, <i>Lonicera japonica</i>. Comparative genomic analysis among five pairs of high- vs low-elevation species, including a comparison of <i>T. glandulifera</i> and <i>L. japonica</i>, indicated that the gene families related to disease resistance experienced a significantly convergent contraction in alpine plants compared with their lowland relatives. The reduction in gene repertory size was largely concentrated in clades of genes for pathogen recognition (e.g. <i>CNL</i>s, <i>prRLP</i>s, and XII <i>RLK</i>s), while the clades for signal transduction and development remained nearly unchanged. This finding reflects an energy-saving strategy for survival in hostile alpine areas, where there is a tradeoff with less challenge from pathogens and limited resources for growth. We also identified candidate genes for alpine adaptation (e.g. <i>RAD1</i>, <i>DMC1</i>, and <i>MSH3</i>) that were under convergent positive selection or that exhibited a convergent acceleration in evolutionary rate in the investigated alpine plants. Overall, our study provides novel insights into the high-elevation adaptation strategies of this and other alpine plants.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 5","pages":"uhae077"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transposable elements in Rosaceae: insights into genome evolution, expression dynamics, and syntenic gene regulation. 蔷薇科植物中的可转座元件:对基因组进化、表达动态和同源基因调控的见解。
IF 7.6
园艺研究(英文) Pub Date : 2024-04-26 eCollection Date: 2024-06-01 DOI: 10.1093/hr/uhae118
Ze Yu, Jiale Li, Hanyu Wang, Boya Ping, Xinchu Li, Zhiguang Liu, Bocheng Guo, Qiaoming Yu, Yangjun Zou, Yaqiang Sun, Fengwang Ma, Tao Zhao
{"title":"Transposable elements in Rosaceae: insights into genome evolution, expression dynamics, and syntenic gene regulation.","authors":"Ze Yu, Jiale Li, Hanyu Wang, Boya Ping, Xinchu Li, Zhiguang Liu, Bocheng Guo, Qiaoming Yu, Yangjun Zou, Yaqiang Sun, Fengwang Ma, Tao Zhao","doi":"10.1093/hr/uhae118","DOIUrl":"10.1093/hr/uhae118","url":null,"abstract":"<p><p>Transposable elements (TEs) exert significant influence on plant genomic structure and gene expression. Here, we explored TE-related aspects across 14 Rosaceae genomes, investigating genomic distribution, transposition activity, expression patterns, and nearby differentially expressed genes (DEGs). Analyses unveiled distinct long terminal repeat retrotransposon (LTR-RT) evolutionary patterns, reflecting varied genome size changes among nine species over the past million years. In the past 2.5 million years, <i>Rubus idaeus</i> showed a transposition rate twice as fast as <i>Fragaria vesca</i>, while <i>Pyrus bretschneideri</i> displayed significantly faster transposition compared with <i>Crataegus pinnatifida</i>. Genes adjacent to recent TE insertions were linked to adversity resistance, while those near previous insertions were functionally enriched in morphogenesis, enzyme activity, and metabolic processes. Expression analysis revealed diverse responses of LTR-RTs to internal or external conditions. Furthermore, we identified 3695 pairs of syntenic DEGs proximal to TEs in <i>Malus domestica</i> cv. 'Gala' and <i>M. domestica</i> (GDDH13), suggesting TE insertions may contribute to varietal trait differences in these apple varieties. Our study across representative Rosaceae species underscores the pivotal role of TEs in plant genome evolution within this diverse family. It elucidates how these elements regulate syntenic DEGs on a genome-wide scale, offering insights into Rosaceae-specific genomic evolution.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 6","pages":"uhae118"},"PeriodicalIF":7.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytochemical localization and synthesis mechanism of the glucomannan in pseudobulbs of Bletilla striata Reichb. f. 金针菜假鳞茎中葡甘露聚糖的细胞化学定位和合成机制
园艺研究(英文) Pub Date : 2024-04-22 eCollection Date: 2024-05-01 DOI: 10.1093/hr/uhae092
Junfeng Huang, Shuang Ma, Ming Zhou, Zhihao Liu, Qiong Liang
{"title":"Cytochemical localization and synthesis mechanism of the glucomannan in pseudobulbs of <i>Bletilla striata</i> Reichb. f.","authors":"Junfeng Huang, Shuang Ma, Ming Zhou, Zhihao Liu, Qiong Liang","doi":"10.1093/hr/uhae092","DOIUrl":"10.1093/hr/uhae092","url":null,"abstract":"<p><p>The dried pseudobulbs of <i>Bletilla striata</i>, an important traditional Chinese medicine named <i>BaiJi</i>, have an extraordinary polysaccharide content and excellent prospects for medicinal effects. However, the distribution and molecular mechanism underlying biosynthesis are poorly understood. In this study, chemical and immunologic analyses were performed in representative tissues of <i>B. striata</i>, and the results showed that what are conventionally termed <i>Bletilla striata</i> polysaccharides (BSPs) are water-soluble polysaccharides deposited only in pseudobulbs. The structural component of BSPs is glucomannan, with a mannose:glucose mass ratio of ~3:2. BSPs are present in the parenchyma of the pseudobulbs in cells known as glucomannan idioblasts and distributed in the cytoplasm within cellular membranes, but are not contained in the vacuole. Comparative transcriptomics and bioinformatics analyses mapped the pathway from sucrose to BSP and identified <i>BsGPI</i>, <i>BsmanA</i>, and <i>BsCSLA</i>s as the key genes of BSP biosynthesis, suggesting that the functional differentiation of the cellulose synthase-like family A (CSLA) may be critical for the flow of glucomannan to the BSP or cell wall. Subsequently, virus-mediated gene silencing showed that silencing of two CSLAs (<i>Bs03G11846</i> and <i>Bs03G11849</i>) led to a decrease in BSP content, and yeast two-hybrid and luciferase complementation experiments confirmed that four CSLAs (Bs03G11846, Bs03G11847, Bs03G11848, and Bs03G11849) can form homo- or heterodimers, suggesting that multiple CSLAs may form a large complex that functions in BSP synthesis. Our results provide cytological evidence of BSP and describe the isolation and characterization of candidate genes involved in BSP synthesis, laying a solid foundation for further research on its regulation mechanisms and the genetic engineering breeding of <i>B. striata</i>.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 5","pages":"uhae092"},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative transcriptome and functional analyses provide insights into the key factors regulating shoot regeneration in highbush blueberry. 通过比较转录组和功能分析,可以深入了解调控高丛蓝莓嫩枝再生的关键因素。
IF 7.6
园艺研究(英文) Pub Date : 2024-04-22 eCollection Date: 2024-06-01 DOI: 10.1093/hr/uhae114
Masafumi Omori, Hisayo Yamane, Ryutaro Tao
{"title":"Comparative transcriptome and functional analyses provide insights into the key factors regulating shoot regeneration in highbush blueberry.","authors":"Masafumi Omori, Hisayo Yamane, Ryutaro Tao","doi":"10.1093/hr/uhae114","DOIUrl":"10.1093/hr/uhae114","url":null,"abstract":"<p><p>Establishing an efficient plant regeneration system is a crucial prerequisite for genetic engineering technology in plants. However, the regeneration rate exhibits considerable variability among genotypes, and the key factors underlying shoot regeneration capacity remain largely elusive. Blueberry leaf explants cultured on a medium rich in cytokinins exhibit direct shoot organogenesis without prominent callus formation, which holds promise for expediting genetic transformation while minimizing somatic mutations during culture. The objective of this study is to unravel the molecular and genetic determinants that govern cultivar-specific shoot regeneration potential in highbush blueberry (<i>Vaccinium corymbosum</i> L.). We conducted comparative transcriptome analysis using two highbush blueberry genotypes: 'Blue Muffin' ('BM') displaying a high regeneration rate (>80%) and 'O'Neal' ('ON') exhibiting a low regeneration rate (<10%). The findings revealed differential expression of numerous auxin-related genes; notably, 'BM' exhibited higher expression of auxin signaling genes compared to 'ON'. Among blueberry orthologs of transcription factors involved in meristem formation in <i>Arabidopsis</i>, expression of <i>VcENHANCER OF SHOOT REGENERATION</i> (<i>VcESR</i>), <i>VcWUSCHEL</i> (<i>VcWUS</i>), and <i>VcCUP-SHAPED COTYLEDON 2.1</i> were significantly higher in 'BM' relative to 'ON'. Exogenous application of auxin promoted regeneration, as well as <i>VcESR</i> and <i>VcWUS</i> expression, whereas inhibition of auxin biosynthesis yielded the opposite effects. Overexpression of <i>VcESR</i> in 'BM' promoted shoot regeneration under phytohormone-free conditions by activating the expression of cytokinin- and auxin-related genes. These findings provide new insights into the molecular mechanisms underlying blueberry regeneration and have practical implications for enhancing plant regeneration and transformation techniques.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 6","pages":"uhae114"},"PeriodicalIF":7.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transcription factor CpMYB62 controls the genetic network that leads to the determination of female flowers in Cucurbita pepo. 转录因子 CpMYB62 控制着决定葫芦科植物雌花的遗传网络。
IF 7.6
园艺研究(英文) Pub Date : 2024-04-22 eCollection Date: 2024-06-01 DOI: 10.1093/hr/uhae115
María Segura, Alicia García, German Gamarra, Álvaro Benítez, Jessica Iglesias-Moya, Cecilia Martínez, Manuel Jamilena
{"title":"The transcription factor CpMYB62 controls the genetic network that leads to the determination of female flowers in <i>Cucurbita pepo</i>.","authors":"María Segura, Alicia García, German Gamarra, Álvaro Benítez, Jessica Iglesias-Moya, Cecilia Martínez, Manuel Jamilena","doi":"10.1093/hr/uhae115","DOIUrl":"10.1093/hr/uhae115","url":null,"abstract":"<p><p>In monoecious species, female flowering constitutes the developmental process that determines the onset and production of fruit and is therefore closely related to crop yield. This article presents the identification and phenotypic and molecular characterization of <i>myb62</i>, an ethylmethane sulfonate loss-of-function mutation that completely blocks the female floral transition, converting all female flowers into male flowers. BSA-seq analysis coupled with WGS showed that <i>myb62</i> corresponds to a C>T transition in the coding region of the gene <i>CpMYB62</i>, generating a premature stop codon and a truncated transcription factor without its N-terminal effector domain. The <i>myb62</i> phenotype was partially rescued by exogenous ethylene application, indicating that the function of <i>CpMYB62</i> is mediated by ethylene. Different evidence supports this conclusion: first, the reduced ethylene production of the mutant, and second, the male flower productive phenotype of the double mutant between <i>myb62</i> and the ethylene-insensitive mutant <i>etr2b</i>, which demonstrated that <i>myb62</i> is epistatic over <i>etr2b</i>. Furthermore, transcriptomic analysis of WT and <i>myb62</i> apical shoots confirmed that <i>CpMYB62</i> regulates master sex-determining genes, upregulating those encoding the ethylene biosynthesis enzymes <i>CpACO2B</i> and <i>CpACS27A</i> and those encoding for transcription factors that promote the development of carpels(<i>CpCRC</i>), but downregulating those involved in the arrest of carpels (<i>CpWIP1</i>), In the gene network controlling sex determination in cucurbits, CpMYB62 occupies the most upstream position, activating ethylene and other sex determining genes involved in female flower determination in <i>Cucurbita</i>  <i>pepo</i>.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 6","pages":"uhae115"},"PeriodicalIF":7.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Chromosome-level genome assembly and population genomics reveals crucial selection for subgynoecy development in chieh-qua. Correction to:染色体水平的基因组组装和群体基因组学揭示了姬鼠亚雄性发育的关键选择。
IF 7.6
园艺研究(英文) Pub Date : 2024-04-22 eCollection Date: 2024-09-01 DOI: 10.1093/hr/uhae246
{"title":"Correction to: Chromosome-level genome assembly and population genomics reveals crucial selection for subgynoecy development in chieh-qua.","authors":"","doi":"10.1093/hr/uhae246","DOIUrl":"https://doi.org/10.1093/hr/uhae246","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/hr/uhae113.].</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 9","pages":"uhae246"},"PeriodicalIF":7.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信