Wenying Li, Xiang Dong, Xingtan Zhang, Jie Cao, Meilan Liu, Xu Zhou, Hongxu Long, Heping Cao, Hai Lin, Lin Zhang
{"title":"基因组组装和重新测序揭示了 Vernicia montana 的进化、种群选择和性别鉴定。","authors":"Wenying Li, Xiang Dong, Xingtan Zhang, Jie Cao, Meilan Liu, Xu Zhou, Hongxu Long, Heping Cao, Hai Lin, Lin Zhang","doi":"10.1093/hr/uhae141","DOIUrl":null,"url":null,"abstract":"<p><p><i>Vernicia montana</i> is a dioecious plant widely cultivated for high-quality tung oil production and ornamental purposes in the Euphorbiaceae family. The lack of genomic information has severely hindered molecular breeding for genetic improvement and early sex identification in <i>V. montana</i>. Here, we present a chromosome-level reference genome of a male <i>V. montana</i> with a total size of 1.29 Gb and a contig N50 of 3.69 Mb. Genome analysis revealed that different repeat lineages drove the expansion of genome size. The model of chromosome evolution in the Euphorbiaceae family suggests that polyploidization-induced genomic structural variation reshaped the chromosome structure, giving rise to the diverse modern chromosomes. Based on whole-genome resequencing data and analyses of selective sweep and genetic diversity, several genes associated with stress resistance and flavonoid synthesis such as CYP450 genes and members of the LRR-RLK family, were identified and presumed to have been selected during the evolutionary process. Genome-wide association studies were conducted and a putative sex-linked insertion and deletion (InDel) (Chr 2: 102 799 917-102 799 933 bp) was identified and developed as a polymorphic molecular marker capable of effectively detecting the gender of <i>V. montana</i>. This InDel is located in the second intron of <i>VmBASS4</i>, suggesting a possible role of <i>VmBASS4</i> in sex determination in <i>V. montana.</i> This study sheds light on the genome evolution and sex identification of <i>V. montana</i>, which will facilitate research on the development of agronomically important traits and genomics-assisted breeding.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233859/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome assembly and resequencing shed light on evolution, population selection, and sex identification in <i>Vernicia montana</i>.\",\"authors\":\"Wenying Li, Xiang Dong, Xingtan Zhang, Jie Cao, Meilan Liu, Xu Zhou, Hongxu Long, Heping Cao, Hai Lin, Lin Zhang\",\"doi\":\"10.1093/hr/uhae141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Vernicia montana</i> is a dioecious plant widely cultivated for high-quality tung oil production and ornamental purposes in the Euphorbiaceae family. The lack of genomic information has severely hindered molecular breeding for genetic improvement and early sex identification in <i>V. montana</i>. Here, we present a chromosome-level reference genome of a male <i>V. montana</i> with a total size of 1.29 Gb and a contig N50 of 3.69 Mb. Genome analysis revealed that different repeat lineages drove the expansion of genome size. The model of chromosome evolution in the Euphorbiaceae family suggests that polyploidization-induced genomic structural variation reshaped the chromosome structure, giving rise to the diverse modern chromosomes. Based on whole-genome resequencing data and analyses of selective sweep and genetic diversity, several genes associated with stress resistance and flavonoid synthesis such as CYP450 genes and members of the LRR-RLK family, were identified and presumed to have been selected during the evolutionary process. Genome-wide association studies were conducted and a putative sex-linked insertion and deletion (InDel) (Chr 2: 102 799 917-102 799 933 bp) was identified and developed as a polymorphic molecular marker capable of effectively detecting the gender of <i>V. montana</i>. This InDel is located in the second intron of <i>VmBASS4</i>, suggesting a possible role of <i>VmBASS4</i> in sex determination in <i>V. montana.</i> This study sheds light on the genome evolution and sex identification of <i>V. montana</i>, which will facilitate research on the development of agronomically important traits and genomics-assisted breeding.</p>\",\"PeriodicalId\":57479,\"journal\":{\"name\":\"园艺研究(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233859/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"园艺研究(英文)\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhae141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genome assembly and resequencing shed light on evolution, population selection, and sex identification in Vernicia montana.
Vernicia montana is a dioecious plant widely cultivated for high-quality tung oil production and ornamental purposes in the Euphorbiaceae family. The lack of genomic information has severely hindered molecular breeding for genetic improvement and early sex identification in V. montana. Here, we present a chromosome-level reference genome of a male V. montana with a total size of 1.29 Gb and a contig N50 of 3.69 Mb. Genome analysis revealed that different repeat lineages drove the expansion of genome size. The model of chromosome evolution in the Euphorbiaceae family suggests that polyploidization-induced genomic structural variation reshaped the chromosome structure, giving rise to the diverse modern chromosomes. Based on whole-genome resequencing data and analyses of selective sweep and genetic diversity, several genes associated with stress resistance and flavonoid synthesis such as CYP450 genes and members of the LRR-RLK family, were identified and presumed to have been selected during the evolutionary process. Genome-wide association studies were conducted and a putative sex-linked insertion and deletion (InDel) (Chr 2: 102 799 917-102 799 933 bp) was identified and developed as a polymorphic molecular marker capable of effectively detecting the gender of V. montana. This InDel is located in the second intron of VmBASS4, suggesting a possible role of VmBASS4 in sex determination in V. montana. This study sheds light on the genome evolution and sex identification of V. montana, which will facilitate research on the development of agronomically important traits and genomics-assisted breeding.