园艺研究(英文)Pub Date : 2025-02-24eCollection Date: 2025-02-01DOI: 10.1093/hr/uhaf047
{"title":"Correction to: DgbZIP3 interacts with DgbZIP2 to increase the expression of <i>DgPOD</i> for cold stress tolerance in chrysanthemum.","authors":"","doi":"10.1093/hr/uhaf047","DOIUrl":"https://doi.org/10.1093/hr/uhaf047","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/hr/uhac105.].</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 2","pages":"uhaf047"},"PeriodicalIF":7.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143494855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
园艺研究(英文)Pub Date : 2025-01-11eCollection Date: 2025-01-01DOI: 10.1093/hr/uhae271
Xueqian Jiang, Xiangcui Zeng, Ming Xu, Mingna Li, Fan Zhang, Fei He, Tianhui Yang, Chuan Wang, Ting Gao, Ruicai Long, Qingchuan Yang, Junmei Kang
{"title":"The whole-genome dissection of root system architecture provides new insights for the genetic improvement of alfalfa (<i>Medicago sativa</i> L.).","authors":"Xueqian Jiang, Xiangcui Zeng, Ming Xu, Mingna Li, Fan Zhang, Fei He, Tianhui Yang, Chuan Wang, Ting Gao, Ruicai Long, Qingchuan Yang, Junmei Kang","doi":"10.1093/hr/uhae271","DOIUrl":"10.1093/hr/uhae271","url":null,"abstract":"<p><p>Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.50) between root dry weight (RDW) and alfalfa dry weight under normal conditions (N_DW). A genome-wide association study (GWAS) was performed using 1 303 374 single-nucleotide polymorphisms (SNPs) to explore the relationships between RSA traits. Sixty significant SNPs (-log <sub><b>10</b></sub> (<i>P</i>) ≥ 5) were identified, with genes within the 50 kb upstream and downstream ranges primarily enriched in GO terms related to root development, hormone synthesis, and signaling, as well as morphological development. Further analysis identified 19 high-confidence candidate genes, including AUXIN RESPONSE FACTORs (ARFs), LATERAL ORGAN BOUNDARIES-DOMAIN (LBD), and WUSCHEL-RELATED HOMEOBOX (WOX). We verified that the forage dry weight under both normal and drought conditions exhibited significant differences among materials with different numbers of favorable haplotypes. Alfalfa containing more favorable haplotypes exhibited higher forage yields, whereas favorable haplotypes were not subjected to human selection during alfalfa breeding. Genomic prediction (GP) utilized SNPs from GWAS and machine learning for each RSA trait, achieving prediction accuracies ranging from 0.70 for secondary root position (SRP) to 0.80 for root length (RL), indicating robust predictive capability across the assessed traits. These findings provide new insights into the genetic underpinnings of root development in alfalfa, potentially informing future breeding strategies aimed at improving yield.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae271"},"PeriodicalIF":7.6,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
园艺研究(英文)Pub Date : 2025-01-06eCollection Date: 2025-01-01DOI: 10.1093/hr/uhae358
Zong-Ming Max Cheng
{"title":"Editorial: introducing dedication reviews-broad reviews in plant and horticultural sciences.","authors":"Zong-Ming Max Cheng","doi":"10.1093/hr/uhae358","DOIUrl":"https://doi.org/10.1093/hr/uhae358","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae358"},"PeriodicalIF":7.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
园艺研究(英文)Pub Date : 2024-11-06eCollection Date: 2025-02-01DOI: 10.1093/hr/uhae312
Michael Tang, Jiang Wang, Baskaran Kannan, Niki Maria Koukoulidis, Yi-Hsuan Lin, Fredy Altpeter, Li-Qing Chen
{"title":"Tonoplast sugar transporters as key drivers of sugar accumulation, a case study in sugarcane.","authors":"Michael Tang, Jiang Wang, Baskaran Kannan, Niki Maria Koukoulidis, Yi-Hsuan Lin, Fredy Altpeter, Li-Qing Chen","doi":"10.1093/hr/uhae312","DOIUrl":"10.1093/hr/uhae312","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 2","pages":"uhae312"},"PeriodicalIF":7.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ectopic biosynthesis of catechin of tea plant can be completed by co-expression of the three <i>CsANS</i>, <i>CsLAR</i>, and <i>CsANR</i> genes.","authors":"Ni Yang, Jing-Wen Li, Yuan-Jie Deng, Rui-Min Teng, Wei Luo, Gui-Nan Li, Zhi-Hang Hu, Hui Liu, Ai-Sheng Xiong, Jian Zhang, Quan-Hong Yao, Jing Zhuang","doi":"10.1093/hr/uhae304","DOIUrl":"10.1093/hr/uhae304","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 2","pages":"uhae304"},"PeriodicalIF":7.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
园艺研究(英文)Pub Date : 2024-09-16eCollection Date: 2025-01-01DOI: 10.1093/hr/uhae263
Yuepeng Han
{"title":"Decoding the genetic basis of secretory tissues in plants.","authors":"Yuepeng Han","doi":"10.1093/hr/uhae263","DOIUrl":"10.1093/hr/uhae263","url":null,"abstract":"<p><p>Although plant secretory tissues play important roles in host defense against herbivores and pathogens and the attraction of insect pollinators, their genetic control remains elusive. Here, it is focused that current progress has been made in the genetic regulatory mechanisms underpinning secretory tissue development in land plants. C1HDZ transcription factors (TFs) are found to play crucial roles in the regulation of internal secretory tissues in liverworts and <i>Citrus</i> as well as external secretory tissues in peach. C1HDZ TFs regulate secretory tissue development via synergistic interaction with AP2/ERF and MYC TFs. Thus, a set of genes are speculated to be recruited convergently for the formation of secretory tissues in land plants.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae263"},"PeriodicalIF":7.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting the role of light signaling in plant responses to salt stress.","authors":"Yinxia Peng, Haiyan Zhu, Yiting Wang, Jin Kang, Lixia Hu, Ling Li, Kangyou Zhu, Jiarong Yan, Xin Bu, Xiujie Wang, Ying Zhang, Xin Sun, Golam Jalal Ahammed, Chao Jiang, Sida Meng, Yufeng Liu, Zhouping Sun, Mingfang Qi, Tianlai Li, Feng Wang","doi":"10.1093/hr/uhae262","DOIUrl":"10.1093/hr/uhae262","url":null,"abstract":"<p><p>As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress. These strategies include altering root development direction, shortening the life cycle, accelerating dormancy, closing stomata to reduce transpiration, and decreasing biomass. Apart from being a prime energy source, light is an environmental signal that profoundly influences plant growth and development and also participates in plants' response to salt stress. This review summarizes the regulatory network of salt tolerance by light signals in plants, which is vital to further understanding plants' adaptation to high salinity. In addition, the review highlights potential future uses of genetic engineering and light supplement technology by light-emitting diode (LED) to improve crop growth in saline-alkali environments in order to make full use of the vast saline land.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae262"},"PeriodicalIF":7.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}