Untargeted metabolomic genome-wide association study reveals genetic and biochemical insights into polyphenols of apple fruit.

IF 8.5 Q1 GENETICS & HEREDITY
园艺研究(英文) Pub Date : 2025-08-12 eCollection Date: 2025-09-01 DOI:10.1093/hr/uhaf159
Jun Song, Beatrice Amyotte, Leslie Campbell Palmer, Melinda Vinqvist-Tymchuk, Kyra Dougherty, Letitia Da Ros
{"title":"Untargeted metabolomic genome-wide association study reveals genetic and biochemical insights into polyphenols of apple fruit.","authors":"Jun Song, Beatrice Amyotte, Leslie Campbell Palmer, Melinda Vinqvist-Tymchuk, Kyra Dougherty, Letitia Da Ros","doi":"10.1093/hr/uhaf159","DOIUrl":null,"url":null,"abstract":"<p><p>Apple (<i>Malus × domestica</i>) is one of the most popular fruits grown and consumed worldwide, contributing to human health with significant amounts of polyphenols and other bioactive compounds, and providing positive impacts to the economy and society. Understanding the diversity and inheritance of health-active compounds in apple can provide novel selection criteria for future breeding and cultivar development, as consumers increasingly prioritize the health benefits of their food choices. We therefore conducted an untargeted metabolomic analysis using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS) to investigate thousands of semipolar chemicals, mainly phenolic compounds, in 439 diverse apple accessions, and quantified 2066 features in positive ion mode. To identify key areas of genetic control for apple metabolite abundance, we performed a metabolomic genome-wide association study (mGWAS) on the quantified mass features using ~280 000 single nucleotide polymorphisms (SNPs). The mGWAS revealed >630 significant loci with hotspots for various groups of known and unknown phenolic compounds including flavonols on Chromosome 1, dihydrochalcones on Chromosome 5, and flavanols on Chromosomes 15 and 16. The most significant hotspot on Chromosome 16 included bHLH and C2H2 transcription factors that may play a role in controlling the abundance and complexity of phenolic compounds through regulation of the flavonoid biosynthesis pathway. Our analysis links the apple metabolome with candidate genes and biosynthetic mechanisms and establishes a foundation for marker-assisted breeding and gene editing to improve and modify phenolic compounds in apple for marketability and the benefit of human health.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 9","pages":"uhaf159"},"PeriodicalIF":8.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12377893/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhaf159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Apple (Malus × domestica) is one of the most popular fruits grown and consumed worldwide, contributing to human health with significant amounts of polyphenols and other bioactive compounds, and providing positive impacts to the economy and society. Understanding the diversity and inheritance of health-active compounds in apple can provide novel selection criteria for future breeding and cultivar development, as consumers increasingly prioritize the health benefits of their food choices. We therefore conducted an untargeted metabolomic analysis using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS) to investigate thousands of semipolar chemicals, mainly phenolic compounds, in 439 diverse apple accessions, and quantified 2066 features in positive ion mode. To identify key areas of genetic control for apple metabolite abundance, we performed a metabolomic genome-wide association study (mGWAS) on the quantified mass features using ~280 000 single nucleotide polymorphisms (SNPs). The mGWAS revealed >630 significant loci with hotspots for various groups of known and unknown phenolic compounds including flavonols on Chromosome 1, dihydrochalcones on Chromosome 5, and flavanols on Chromosomes 15 and 16. The most significant hotspot on Chromosome 16 included bHLH and C2H2 transcription factors that may play a role in controlling the abundance and complexity of phenolic compounds through regulation of the flavonoid biosynthesis pathway. Our analysis links the apple metabolome with candidate genes and biosynthetic mechanisms and establishes a foundation for marker-assisted breeding and gene editing to improve and modify phenolic compounds in apple for marketability and the benefit of human health.

非靶向代谢组学全基因组关联研究揭示了苹果果实多酚的遗传和生化见解。
苹果(Malus × domestica)是世界上最受欢迎的水果之一,它含有大量的多酚和其他生物活性化合物,对人类健康有益,并对经济和社会产生积极影响。随着消费者越来越重视食物选择的健康益处,了解苹果中健康活性化合物的多样性和遗传可以为未来的育种和品种开发提供新的选择标准。因此,我们使用超高效液相色谱-质谱(UPLC-MS)进行了非靶向代谢组学分析,研究了439种不同苹果材料中数千种半极性化学物质,主要是酚类化合物,并在正离子模式下量化了2066种特征。为了确定苹果代谢物丰度遗传控制的关键区域,我们利用约28万个单核苷酸多态性(SNPs)对苹果的定量质量特征进行了代谢组学全基因组关联研究(mGWAS)。mGWAS发现了bb6030个显著位点,其中包括1号染色体上的黄酮醇、5号染色体上的二氢查尔酮、15号和16号染色体上的黄烷醇等各种已知和未知的酚类化合物。16号染色体上最重要的热点包括bHLH和C2H2转录因子,它们可能通过调节类黄酮生物合成途径来控制酚类化合物的丰度和复杂性。我们的分析将苹果代谢组与候选基因和生物合成机制联系起来,为标记辅助育种和基因编辑奠定了基础,以改进和修饰苹果中的酚类化合物,使其具有市场价值,并有益于人类健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信