园艺研究(英文)Pub Date : 2024-11-06eCollection Date: 2025-02-01DOI: 10.1093/hr/uhae312
Michael Tang, Jiang Wang, Baskaran Kannan, Niki Maria Koukoulidis, Yi-Hsuan Lin, Fredy Altpeter, Li-Qing Chen
{"title":"Tonoplast sugar transporters as key drivers of sugar accumulation, a case study in sugarcane.","authors":"Michael Tang, Jiang Wang, Baskaran Kannan, Niki Maria Koukoulidis, Yi-Hsuan Lin, Fredy Altpeter, Li-Qing Chen","doi":"10.1093/hr/uhae312","DOIUrl":"10.1093/hr/uhae312","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 2","pages":"uhae312"},"PeriodicalIF":7.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ectopic biosynthesis of catechin of tea plant can be completed by co-expression of the three <i>CsANS</i>, <i>CsLAR</i>, and <i>CsANR</i> genes.","authors":"Ni Yang, Jing-Wen Li, Yuan-Jie Deng, Rui-Min Teng, Wei Luo, Gui-Nan Li, Zhi-Hang Hu, Hui Liu, Ai-Sheng Xiong, Jian Zhang, Quan-Hong Yao, Jing Zhuang","doi":"10.1093/hr/uhae304","DOIUrl":"10.1093/hr/uhae304","url":null,"abstract":"","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 2","pages":"uhae304"},"PeriodicalIF":7.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting the role of light signaling in plant responses to salt stress.","authors":"Yinxia Peng, Haiyan Zhu, Yiting Wang, Jin Kang, Lixia Hu, Ling Li, Kangyou Zhu, Jiarong Yan, Xin Bu, Xiujie Wang, Ying Zhang, Xin Sun, Golam Jalal Ahammed, Chao Jiang, Sida Meng, Yufeng Liu, Zhouping Sun, Mingfang Qi, Tianlai Li, Feng Wang","doi":"10.1093/hr/uhae262","DOIUrl":"10.1093/hr/uhae262","url":null,"abstract":"<p><p>As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress. These strategies include altering root development direction, shortening the life cycle, accelerating dormancy, closing stomata to reduce transpiration, and decreasing biomass. Apart from being a prime energy source, light is an environmental signal that profoundly influences plant growth and development and also participates in plants' response to salt stress. This review summarizes the regulatory network of salt tolerance by light signals in plants, which is vital to further understanding plants' adaptation to high salinity. In addition, the review highlights potential future uses of genetic engineering and light supplement technology by light-emitting diode (LED) to improve crop growth in saline-alkali environments in order to make full use of the vast saline land.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae262"},"PeriodicalIF":7.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
园艺研究(英文)Pub Date : 2024-09-16eCollection Date: 2025-01-01DOI: 10.1093/hr/uhae263
Yuepeng Han
{"title":"Decoding the genetic basis of secretory tissues in plants.","authors":"Yuepeng Han","doi":"10.1093/hr/uhae263","DOIUrl":"10.1093/hr/uhae263","url":null,"abstract":"<p><p>Although plant secretory tissues play important roles in host defense against herbivores and pathogens and the attraction of insect pollinators, their genetic control remains elusive. Here, it is focused that current progress has been made in the genetic regulatory mechanisms underpinning secretory tissue development in land plants. C1HDZ transcription factors (TFs) are found to play crucial roles in the regulation of internal secretory tissues in liverworts and <i>Citrus</i> as well as external secretory tissues in peach. C1HDZ TFs regulate secretory tissue development via synergistic interaction with AP2/ERF and MYC TFs. Thus, a set of genes are speculated to be recruited convergently for the formation of secretory tissues in land plants.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"12 1","pages":"uhae263"},"PeriodicalIF":7.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
园艺研究(英文)Pub Date : 2024-09-16eCollection Date: 2024-12-01DOI: 10.1093/hr/uhae259
Heping Wan, Lan Cao, Ping Wang, Hanbing Hu, Rui Guo, Jingdong Chen, Huixia Zhao, Changli Zeng, Xiaoyun Liu
{"title":"Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea (<i>Pisum sativum L</i>).","authors":"Heping Wan, Lan Cao, Ping Wang, Hanbing Hu, Rui Guo, Jingdong Chen, Huixia Zhao, Changli Zeng, Xiaoyun Liu","doi":"10.1093/hr/uhae259","DOIUrl":"10.1093/hr/uhae259","url":null,"abstract":"<p><p>Pea occupy a key position in modern biogenetics, playing multifaceted roles as food, vegetable, fodder, and green manure. However, due to the complex nature of its genome and the prolonged unveiling of high-quality genetic maps, research into the molecular mechanisms underlying pea development and stress responses has been significantly delayed. Furthermore, the exploration of its epigenetic modification profiles and associated regulatory mechanisms remains uncharted. This research conducted a comprehensive investigation of four specific histone marks, namely H3K4me3, H3K27me3, H3K9ac, and H3K9me2, and the transcriptome in pea under normal conditions, and established a global map of genome-wide regulatory elements, chromatin states, and dynamics based on these major modifications. Our analysis identified epigenomic signals across ~82.6% of the genome. Each modification exhibits distinct enrichment patterns: H3K4me3 is predominantly associated with the gibberellin response pathway, H3K27me3 is primarily associated with auxin and ethylene responses, and H3K9ac is primarily associated with negative regulatory stimulus responses. We also identified a novel bivalent chromatin state (H3K9ac-H3K27me3) in pea, which is related to their development and stress response. Additionally, we unveil that these histone modifications synergistically regulate metabolic-related genes, influencing metabolite production under salt stress conditions. Our findings offer a panoramic view of the major histone modifications in pea, elucidate their interplay, and highlight their transcriptional regulatory roles during salt stress.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 12","pages":"uhae259"},"PeriodicalIF":7.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}