盐胁迫下豌豆(Pisum sativum L)主要组蛋白修饰的全基因组定位及代谢基因的协调调控

IF 7.6 Q1 GENETICS & HEREDITY
园艺研究(英文) Pub Date : 2024-09-16 eCollection Date: 2024-12-01 DOI:10.1093/hr/uhae259
Heping Wan, Lan Cao, Ping Wang, Hanbing Hu, Rui Guo, Jingdong Chen, Huixia Zhao, Changli Zeng, Xiaoyun Liu
{"title":"盐胁迫下豌豆(Pisum sativum L)主要组蛋白修饰的全基因组定位及代谢基因的协调调控","authors":"Heping Wan, Lan Cao, Ping Wang, Hanbing Hu, Rui Guo, Jingdong Chen, Huixia Zhao, Changli Zeng, Xiaoyun Liu","doi":"10.1093/hr/uhae259","DOIUrl":null,"url":null,"abstract":"<p><p>Pea occupy a key position in modern biogenetics, playing multifaceted roles as food, vegetable, fodder, and green manure. However, due to the complex nature of its genome and the prolonged unveiling of high-quality genetic maps, research into the molecular mechanisms underlying pea development and stress responses has been significantly delayed. Furthermore, the exploration of its epigenetic modification profiles and associated regulatory mechanisms remains uncharted. This research conducted a comprehensive investigation of four specific histone marks, namely H3K4me3, H3K27me3, H3K9ac, and H3K9me2, and the transcriptome in pea under normal conditions, and established a global map of genome-wide regulatory elements, chromatin states, and dynamics based on these major modifications. Our analysis identified epigenomic signals across ~82.6% of the genome. Each modification exhibits distinct enrichment patterns: H3K4me3 is predominantly associated with the gibberellin response pathway, H3K27me3 is primarily associated with auxin and ethylene responses, and H3K9ac is primarily associated with negative regulatory stimulus responses. We also identified a novel bivalent chromatin state (H3K9ac-H3K27me3) in pea, which is related to their development and stress response. Additionally, we unveil that these histone modifications synergistically regulate metabolic-related genes, influencing metabolite production under salt stress conditions. Our findings offer a panoramic view of the major histone modifications in pea, elucidate their interplay, and highlight their transcriptional regulatory roles during salt stress.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"11 12","pages":"uhae259"},"PeriodicalIF":7.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea (<i>Pisum sativum L</i>).\",\"authors\":\"Heping Wan, Lan Cao, Ping Wang, Hanbing Hu, Rui Guo, Jingdong Chen, Huixia Zhao, Changli Zeng, Xiaoyun Liu\",\"doi\":\"10.1093/hr/uhae259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pea occupy a key position in modern biogenetics, playing multifaceted roles as food, vegetable, fodder, and green manure. However, due to the complex nature of its genome and the prolonged unveiling of high-quality genetic maps, research into the molecular mechanisms underlying pea development and stress responses has been significantly delayed. Furthermore, the exploration of its epigenetic modification profiles and associated regulatory mechanisms remains uncharted. This research conducted a comprehensive investigation of four specific histone marks, namely H3K4me3, H3K27me3, H3K9ac, and H3K9me2, and the transcriptome in pea under normal conditions, and established a global map of genome-wide regulatory elements, chromatin states, and dynamics based on these major modifications. Our analysis identified epigenomic signals across ~82.6% of the genome. Each modification exhibits distinct enrichment patterns: H3K4me3 is predominantly associated with the gibberellin response pathway, H3K27me3 is primarily associated with auxin and ethylene responses, and H3K9ac is primarily associated with negative regulatory stimulus responses. We also identified a novel bivalent chromatin state (H3K9ac-H3K27me3) in pea, which is related to their development and stress response. Additionally, we unveil that these histone modifications synergistically regulate metabolic-related genes, influencing metabolite production under salt stress conditions. Our findings offer a panoramic view of the major histone modifications in pea, elucidate their interplay, and highlight their transcriptional regulatory roles during salt stress.</p>\",\"PeriodicalId\":57479,\"journal\":{\"name\":\"园艺研究(英文)\",\"volume\":\"11 12\",\"pages\":\"uhae259\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"园艺研究(英文)\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"园艺研究(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.1093/hr/uhae259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

豌豆作为食品、蔬菜、饲料、绿肥等多种用途,在现代生物遗传学中占有重要地位。然而,由于其基因组的复杂性和高质量遗传图谱的长期揭示,对豌豆发育和应激反应的分子机制的研究已经大大延迟。此外,其表观遗传修饰谱和相关调控机制的探索仍然未知。本研究对正常条件下豌豆中H3K4me3、H3K27me3、H3K9ac和H3K9me2四个特异性组蛋白标记以及转录组进行了全面研究,并基于这些主要修饰建立了豌豆全基因组调控元件、染色质状态和动态的全球图谱。我们的分析在82.6%的基因组中发现了表观基因组信号。每种修饰都表现出不同的富集模式:H3K4me3主要与赤霉素反应途径相关,H3K27me3主要与生长素和乙烯反应相关,H3K9ac主要与负调控刺激反应相关。我们还在豌豆中发现了一种新的二价染色质状态(H3K9ac-H3K27me3),这与豌豆的发育和应激反应有关。此外,我们揭示了这些组蛋白修饰协同调节代谢相关基因,影响盐胁迫条件下代谢物的产生。我们的研究结果提供了豌豆中主要组蛋白修饰的全景视图,阐明了它们的相互作用,并强调了它们在盐胁迫下的转录调节作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea (Pisum sativum L).

Pea occupy a key position in modern biogenetics, playing multifaceted roles as food, vegetable, fodder, and green manure. However, due to the complex nature of its genome and the prolonged unveiling of high-quality genetic maps, research into the molecular mechanisms underlying pea development and stress responses has been significantly delayed. Furthermore, the exploration of its epigenetic modification profiles and associated regulatory mechanisms remains uncharted. This research conducted a comprehensive investigation of four specific histone marks, namely H3K4me3, H3K27me3, H3K9ac, and H3K9me2, and the transcriptome in pea under normal conditions, and established a global map of genome-wide regulatory elements, chromatin states, and dynamics based on these major modifications. Our analysis identified epigenomic signals across ~82.6% of the genome. Each modification exhibits distinct enrichment patterns: H3K4me3 is predominantly associated with the gibberellin response pathway, H3K27me3 is primarily associated with auxin and ethylene responses, and H3K9ac is primarily associated with negative regulatory stimulus responses. We also identified a novel bivalent chromatin state (H3K9ac-H3K27me3) in pea, which is related to their development and stress response. Additionally, we unveil that these histone modifications synergistically regulate metabolic-related genes, influencing metabolite production under salt stress conditions. Our findings offer a panoramic view of the major histone modifications in pea, elucidate their interplay, and highlight their transcriptional regulatory roles during salt stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信