园艺研究(英文)最新文献

筛选
英文 中文
The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit. 猕猴桃局部适应多变气候的基因组和表观遗传学足迹。
园艺研究(英文) Pub Date : 2023-02-21 eCollection Date: 2023-04-01 DOI: 10.1093/hr/uhad031
Xu Zhang, Rui Guo, Ruinan Shen, Jacob B Landis, Quan Jiang, Fang Liu, Hengchang Wang, Xiaohong Yao
{"title":"The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit.","authors":"Xu Zhang,&nbsp;Rui Guo,&nbsp;Ruinan Shen,&nbsp;Jacob B Landis,&nbsp;Quan Jiang,&nbsp;Fang Liu,&nbsp;Hengchang Wang,&nbsp;Xiaohong Yao","doi":"10.1093/hr/uhad031","DOIUrl":"10.1093/hr/uhad031","url":null,"abstract":"<p><p>A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates. <i>Actinidia eriantha</i> is a shade-tolerant species, widely distributed in the southern tropical region of China, occurring in spatially heterogeneous environments. In the present study we combined population genomic, epigenomic, and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient, and to assess genomic offset to climatic change for <i>A. eriantha</i>. The population structure is strongly shaped by geography and influenced by restricted gene flow resulting from isolation by distance due to habitat fragmentation. In total, we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation, which were enriched in functional categories related to development processes and stress response; both temperature and precipitation are important factors driving adaptive variation. In addition to single-nucleotide polymorphisms (SNPs), a total of 27 single-methylation variants (SMVs) had significant correlation with at least one of four climatic variables and 16 SMVs were located in or adjacent to genes, several of which were predicted to be involved in plant response to abiotic or biotic stress. Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change. Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation. Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 4","pages":"uhad031"},"PeriodicalIF":0.0,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41166520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The RING-H2 gene LdXERICO plays a negative role in dormancy release regulated by low temperature in Lilium davidii var. unicolor. RING-H2基因LdXERICO在低温调控下对独花百合休眠解除起着负调控作用。
园艺研究(英文) Pub Date : 2023-02-20 eCollection Date: 2023-04-01 DOI: 10.1093/hr/uhad030
Xinyue Fan, Xiaoman Zou, Linlan Fu, Yue Yang, Min Li, Chunxia Wang, Hongmei Sun
{"title":"The RING-H2 gene <i>LdXERICO</i> plays a negative role in dormancy release regulated by low temperature in <i>Lilium davidii</i> var. <i>unicolor</i>.","authors":"Xinyue Fan,&nbsp;Xiaoman Zou,&nbsp;Linlan Fu,&nbsp;Yue Yang,&nbsp;Min Li,&nbsp;Chunxia Wang,&nbsp;Hongmei Sun","doi":"10.1093/hr/uhad030","DOIUrl":"10.1093/hr/uhad030","url":null,"abstract":"<p><p>Dormancy regulation is the basis of the sustainable development of the lily industry. Therefore, basic research on lily dormancy is crucial for innovation in lily cultivation and breeding. Previous studies revealed that dormancy release largely depends on abscisic acid (ABA) degradation. However, the key genes and potential regulatory network remain unclear. We used exogenous ABA and ABA inhibitors to elucidate the effect of ABA on lily dormancy. Based on the results of weighted gene coexpression network analysis (WGCNA), the hub gene <i>LdXERICO</i> was identified in modules highly related to endogenous ABA, and a large number of coexpressed genes were identified. <i>LdXERICO</i> was induced by exogenous ABA and expressed at higher levels in tissues with vigorous physiological activity. Silencing <i>LdXERICO</i> increased the low-temperature sensitivity of bulblets and accelerated bulblet sprouting. <i>LdXERICO</i> rescued the ABA insensitivity of <i>xerico</i> mutants during seed germination in <i>Arabidopsis</i>, suggesting that it promotes seed dormancy and supporting overexpression studies on lily bulblets. The significant increase in ABA levels in transgenic <i>Arabidopsis</i> expressing <i>LdXERICO</i> indicated that <i>LdXERICO</i> played a role by promoting ABA synthesis. We generated three transgenic lines by overexpressing <i>LdICE1</i> in <i>Arabidopsis thaliana</i> and showed that, in contrast to <i>LdXERICO</i>, <i>LdICE1</i> positively regulated dormancy release. Finally, qRT-PCR confirmed that <i>LdXERICO</i> was epistatic to LdICE1 for dormancy release. We propose that <i>LdXERICO</i>, an essential gene in dormancy regulation through the ABA-related pathway, has a complex regulatory network involving temperature signals. This study provides a theoretical basis for further exploring the mechanism of bulb dormancy release.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 4","pages":"uhad030"},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protease inhibitor ASP enhances freezing tolerance by inhibiting protein degradation in kumquat. 蛋白酶抑制剂ASP通过抑制金桔中蛋白质的降解来增强其抗冻性。
园艺研究(英文) Pub Date : 2023-02-16 eCollection Date: 2023-04-01 DOI: 10.1093/hr/uhad023
Hua Yang, Ke-Wei Qiao, Jin-Jing Teng, Jia-Bei Chen, Ying-Li Zhong, Li-Qun Rao, Xing-Yao Xiong, Huang Li
{"title":"Protease inhibitor ASP enhances freezing tolerance by inhibiting protein degradation in kumquat.","authors":"Hua Yang,&nbsp;Ke-Wei Qiao,&nbsp;Jin-Jing Teng,&nbsp;Jia-Bei Chen,&nbsp;Ying-Li Zhong,&nbsp;Li-Qun Rao,&nbsp;Xing-Yao Xiong,&nbsp;Huang Li","doi":"10.1093/hr/uhad023","DOIUrl":"https://doi.org/10.1093/hr/uhad023","url":null,"abstract":"<p><p>Cold acclimation is a complex biological process leading to the development of freezing tolerance in plants. In this study, we demonstrated that cold-induced expression of protease inhibitor FmASP in a <i>Citrus</i>-relative species kumquat [<i>Fortunella margarita</i> (Lour.) Swingle] contributes to its freezing tolerance by minimizing protein degradation. Firstly, we found that only cold-acclimated kumquat plants, despite extensive leaf cellular damage during freezing, were able to resume their normal growth upon stress relief. To dissect the impact of cold acclimation on this anti-freezing performance, we conducted protein abundance assays and quantitative proteomic analysis of kumquat leaves subjected to cold acclimation (4°C), freezing treatment (-10°C) and post-freezing recovery (25°C). FmASP (Against Serine Protease) and several non-specific proteases were identified as differentially expressed proteins induced by cold acclimation and associated with stable protein abundance throughout the course of low-temperature treatment. FmASP was further characterized as a robust inhibitor of multiple proteases. In addition, heterogeneous expression of <i>FmASP</i> in <i>Arabidopsis</i> confirmed its positive role in freezing tolerance. Finally, we proposed a working model of FmASP and illustrated how this extracellular-localized protease inhibitor protects proteins from degradation, thereby maintaining essential cellular function for post-freezing recovery. These findings revealed the important role of protease inhibition in freezing response and provide insights on how this role may help develop new strategies to enhance plant freezing tolerance.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 4","pages":"uhad023"},"PeriodicalIF":0.0,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41169621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A petunia transcription factor, PhOBF1, regulates flower senescence by modulating gibberellin biosynthesis. 矮牵牛转录因子PhOBF1通过调节赤霉素的生物合成来调节花朵衰老。
园艺研究(英文) Pub Date : 2023-02-16 eCollection Date: 2023-04-01 DOI: 10.1093/hr/uhad022
Xiaotong Ji, Ziwei Xin, Yanping Yuan, Meiling Wang, Xinyi Lu, Jiaqi Li, Yanlong Zhang, Lixin Niu, Cai-Zhong Jiang, Daoyang Sun
{"title":"A petunia transcription factor, <i>PhOBF1</i>, regulates flower senescence by modulating gibberellin biosynthesis.","authors":"Xiaotong Ji,&nbsp;Ziwei Xin,&nbsp;Yanping Yuan,&nbsp;Meiling Wang,&nbsp;Xinyi Lu,&nbsp;Jiaqi Li,&nbsp;Yanlong Zhang,&nbsp;Lixin Niu,&nbsp;Cai-Zhong Jiang,&nbsp;Daoyang Sun","doi":"10.1093/hr/uhad022","DOIUrl":"https://doi.org/10.1093/hr/uhad022","url":null,"abstract":"<p><p>Flower senescence is commonly enhanced by the endogenous hormone ethylene and suppressed by the gibberellins (GAs) in plants. However, the detailed mechanisms for the antagonism of these hormones during flower senescence remain elusive. In this study, we characterized one up-regulated gene <i>PhOBF1</i>, belonging to the basic leucine zipper transcription factor family, in senescing petals of petunia (<i>Petunia hybrida</i>). Exogenous treatments with ethylene and GA<sub>3</sub> provoked a dramatic increase in <i>PhOBF1</i> transcripts. Compared with wild-type plants, <i>PhOBF1</i>-RNAi transgenic petunia plants exhibited shortened flower longevity, while overexpression of <i>PhOBF1</i> resulted in delayed flower senescence<i>.</i> Transcript abundances of two senescence-related genes <i>PhSAG12</i> and <i>PhSAG29</i> were higher in <i>PhOBF1</i>-silenced plants but lower in <i>PhOBF1</i>-overexpressing plants. Silencing and overexpression of <i>PhOBF1</i> affected expression levels of a few genes involved in the GA biosynthesis and signaling pathways, as well as accumulation levels of bioactive GAs GA<sub>1</sub> and GA<sub>3</sub>. Application of GA<sub>3</sub> restored the accelerated petal senescence to normal levels in <i>PhOBF1</i>-RNAi transgenic petunia lines, and reduced ethylene release and transcription of three ethylene biosynthetic genes <i>PhACO1</i>, <i>PhACS1</i>, and <i>PhACS2</i>. Moreover, PhOBF1 was observed to specifically bind to the <i>PhGA20ox3</i> promoter containing a G-box motif. Transient silencing of <i>PhGA20ox3</i> in petunia plants through tobacco rattle virus-based virus-induced gene silencing method led to accelerated corolla senescence. Our results suggest that PhOBF1 functions as a negative regulator of ethylene-mediated flower senescence by modulating the GA production.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 4","pages":"uhad022"},"PeriodicalIF":0.0,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating colorful carrot germplasm through metabolic engineering of betalains pigments. 通过β赖氨酸色素的代谢工程产生丰富多彩的胡萝卜种质。
IF 7.6
园艺研究(英文) Pub Date : 2023-02-14 eCollection Date: 2023-04-01 DOI: 10.1093/hr/uhad024
Yuan-Jie Deng, Ao-Qi Duan, Hui Liu, Ya-Hui Wang, Rong-Rong Zhang, Zhi-Sheng Xu, Ai-Sheng Xiong
{"title":"Generating colorful carrot germplasm through metabolic engineering of betalains pigments.","authors":"Yuan-Jie Deng, Ao-Qi Duan, Hui Liu, Ya-Hui Wang, Rong-Rong Zhang, Zhi-Sheng Xu, Ai-Sheng Xiong","doi":"10.1093/hr/uhad024","DOIUrl":"10.1093/hr/uhad024","url":null,"abstract":"<p><p>Betalains are tyrosine-derived plant pigments exclusively found in the Caryophyllales order and some higher fungi and generally classified into two groups: red-violet betacyanins and yellow-orange betaxanthins. Betalains attract great scientific and economic interest because of their relatively simple biosynthesis pathway, attractive colors and health-promoting properties. Co-expressing two core genes <i>BvCYP76AD1</i> and <i>BvDODA1</i> with or without a glycosyltransferase gene <i>MjcDOPA5GT</i> allowed the engineering of carrot (an important taproot vegetable) to produce a palette of unique colors. The highest total betalains content, 943.2 μg·g<sup>-1</sup> DW, was obtained in carrot taproot transformed with p35S:RUBY which produces all of the necessary enzymes for betalains synthesis. Root-specific production of betalains slightly relieved tyrosine consumption revealing the possible bottleneck in betalains production. Furthermore, a unique volcano-like phenotype in carrot taproot cross-section was created by vascular cambium-specific production of betalains. The betalains-fortified carrot in this study is thus anticipated to be used as functional vegetable and colorful carrot germplasm in breeding to promote health.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 4","pages":"uhad024"},"PeriodicalIF":7.6,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541523/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41169609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. 更正:过量表达乙二醛酶I基因的番茄植株中Al诱导的蛋白质组学变化。
园艺研究(英文) Pub Date : 2023-01-19 eCollection Date: 2023-04-01 DOI: 10.1093/hr/uhad060
{"title":"Correction to: Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene.","authors":"","doi":"10.1093/hr/uhad060","DOIUrl":"https://doi.org/10.1093/hr/uhad060","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/s41438-020-0264-x.].</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 4","pages":"uhad060"},"PeriodicalIF":0.0,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41179550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the biosynthesis of the volatile compound phenylacetaldehyde on chloroplast modifications in tea (Camellia sinensis) plants. 挥发性化合物苯乙醛生物合成对茶树叶绿体修饰的影响。
园艺研究(英文) Pub Date : 2023-01-11 eCollection Date: 2023-03-01 DOI: 10.1093/hr/uhad003
Lanting Zeng, Xiaochen Zhou, Xiumin Fu, Yilong Hu, Dachuan Gu, Xingliang Hou, Fang Dong, Ziyin Yang
{"title":"Effect of the biosynthesis of the volatile compound phenylacetaldehyde on chloroplast modifications in tea (<i>Camellia sinensis</i>) plants.","authors":"Lanting Zeng,&nbsp;Xiaochen Zhou,&nbsp;Xiumin Fu,&nbsp;Yilong Hu,&nbsp;Dachuan Gu,&nbsp;Xingliang Hou,&nbsp;Fang Dong,&nbsp;Ziyin Yang","doi":"10.1093/hr/uhad003","DOIUrl":"https://doi.org/10.1093/hr/uhad003","url":null,"abstract":"<p><p>Plant volatile compounds have important physiological and ecological functions. Phenylacetaldehyde (PAld), a volatile phenylpropanoid/benzenoid, accumulates in the leaves of tea (<i>Camellia sinensis</i>) plants grown under continuous shading. This study was conducted to determine whether PAld production is correlated with light and to elucidate the physiological functions of PAld in tea plants. Specifically, the upstream mechanism modulating PAld biosynthesis in tea plants under different light conditions as well as the effects of PAld on chloroplast/chlorophyll were investigated. The biosynthesis of PAld was inhibited under light, whereas it was induced in darkness. The structural gene encoding aromatic amino acid aminotransferase 1 (<i>CsAAAT1</i>) was expressed at a high level in darkness, consistent with its importance for PAld accumulation. Additionally, the results of a transcriptional activation assay and an electrophoretic mobility shift assay indicated <i>CsAAAT1</i> expression was slightly activated by phytochrome-interacting factor 3-2 (CsPIF3-2), which is a light-responsive transcription factor. Furthermore, PAld might promote the excitation of chlorophyll in dark-treated chloroplasts and mediate electron energy transfer in cells. However, the accumulated PAld can degrade chloroplasts and chlorophyll, with potentially detrimental effects on photosynthesis. Moreover, PAld biosynthesis is inhibited in tea leaves by red and blue light, thereby decreasing the adverse effects of PAld on chloroplasts during daytime. In conclusion, the regulated biosynthesis of PAld in tea plants under light and in darkness leads to chloroplast modifications. The results of this study have expanded our understanding of the biosynthesis and functions of volatile phenylpropanoids/benzenoids in tea leaves.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 3","pages":"uhad003"},"PeriodicalIF":0.0,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Correction to: QTL mapping and characterization of black spot disease resistance using two multi-parental diploid rose populations. 更正:使用两个多亲本二倍体玫瑰群体进行黑斑病抗性的QTL定位和表征。
园艺研究(英文) Pub Date : 2022-08-25 eCollection Date: 2023-04-01 DOI: 10.1093/hr/uhad059
{"title":"Correction to: QTL mapping and characterization of black spot disease resistance using two multi-parental diploid rose populations.","authors":"","doi":"10.1093/hr/uhad059","DOIUrl":"https://doi.org/10.1093/hr/uhad059","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/hr/uhac183.].</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 4","pages":"uhad059"},"PeriodicalIF":0.0,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41173649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic and genomic resources for Rubus breeding: a roadmap for the future. 悬钩子育种的遗传和基因组资源:未来的路线图。
园艺研究(英文) Pub Date : 2019-10-15 eCollection Date: 2019-01-01 DOI: 10.1038/s41438-019-0199-2
Toshi M Foster, Nahla V Bassil, Michael Dossett, Margaret Leigh Worthington, Julie Graham
{"title":"Genetic and genomic resources for <i>Rubus</i> breeding: a roadmap for the future.","authors":"Toshi M Foster,&nbsp;Nahla V Bassil,&nbsp;Michael Dossett,&nbsp;Margaret Leigh Worthington,&nbsp;Julie Graham","doi":"10.1038/s41438-019-0199-2","DOIUrl":"https://doi.org/10.1038/s41438-019-0199-2","url":null,"abstract":"<p><p><i>Rubus</i> fruits are high-value crops that are sought after by consumers for their flavor, visual appeal, and health benefits. To meet this demand, production of red and black raspberries (<i>R. idaeus</i> L. and <i>R. occidentalis</i> L.), blackberries (<i>R</i>. subgenus <i>Rubus</i>), and hybrids, such as Boysenberry and marionberry, is growing worldwide. <i>Rubus</i> breeding programmes are continually striving to improve flavor, texture, machine harvestability, and yield, provide pest and disease resistance, improve storage and processing properties, and optimize fruits and plants for different production and harvest systems. Breeders face numerous challenges, such as polyploidy, the lack of genetic diversity in many of the elite cultivars, and until recently, the relative shortage of genetic and genomic resources available for <i>Rubus</i>. This review will highlight the development of continually improving genetic maps, the identification of Quantitative Trait Loci (QTL)s controlling key traits, draft genomes for red and black raspberry, and efforts to improve gene models. The development of genetic maps and markers, the molecular characterization of wild species and germplasm, and high-throughput genotyping platforms will expedite breeding of improved cultivars. Fully sequenced genomes and accurate gene models facilitate identification of genes underlying traits of interest and enable gene editing technologies such as CRISPR/Cas9.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"6 ","pages":"116"},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41438-019-0199-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41221496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
A high-quality Actinidia chinensis (kiwifruit) genome. 一个高质量的猕猴桃基因组。
园艺研究(英文) Pub Date : 2019-10-15 eCollection Date: 2019-01-01 DOI: 10.1038/s41438-019-0202-y
Haolin Wu, Tao Ma, Minghui Kang, Fandi Ai, Junlin Zhang, Guanyong Dong, Jianquan Liu
{"title":"A high-quality <i>Actinidia chinensis</i> (kiwifruit) genome.","authors":"Haolin Wu,&nbsp;Tao Ma,&nbsp;Minghui Kang,&nbsp;Fandi Ai,&nbsp;Junlin Zhang,&nbsp;Guanyong Dong,&nbsp;Jianquan Liu","doi":"10.1038/s41438-019-0202-y","DOIUrl":"https://doi.org/10.1038/s41438-019-0202-y","url":null,"abstract":"<p><p><i>Actinidia chinensis</i> (kiwifruit) is a perennial horticultural crop species of the Actinidiaceae family with high nutritional and economic value. Two versions of the <i>A. chinensis</i> genomes have been previously assembled, based mainly on relatively short reads. Here, we report an improved chromosome-level reference genome of <i>A. chinensis</i> (v3.0), based mainly on PacBio long reads and Hi-C data. The high-quality assembled genome is 653 Mb long, with 0.76% heterozygosity. At least 43% of the genome consists of repetitive sequences, and the most abundant long terminal repeats were further identified and account for 23.38% of our novel genome. It has clear improvements in contiguity, accuracy, and gene annotation over the two previous versions and contains 40,464 annotated protein-coding genes, of which 94.41% are functionally annotated. Moreover, further analyses of genetic collinearity revealed that the kiwifruit genome has undergone two whole-genome duplications: one affecting all Ericales families near the K-T extinction event and a recent genus-specific duplication. The reference genome presented here will be highly useful for further molecular elucidation of diverse traits and for the breeding of this horticultural crop, as well as evolutionary studies with related taxa.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"6 ","pages":"117"},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41438-019-0202-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41221493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 83
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信