{"title":"Perspectives in and on Quantum Theory","authors":"Richard Healey","doi":"10.1007/s10701-025-00838-1","DOIUrl":"10.1007/s10701-025-00838-1","url":null,"abstract":"<div><p>I take a pragmatist perspective on quantum theory. This is not a view of the world described by quantum theory. In this view quantum theory itself does not describe the physical world (nor our observations, experiences or opinions of it). Instead, the theory offers reliable advice—on when to expect an event of one kind or another, and on how strongly to expect each possible outcome of that event. The event’s actual outcome is a perspectival fact—a fact relative to a physical context of assessment. Measurement outcomes and quantum states are both perspectival. By noticing that each must be relativized to an appropriate physical context one can resolve the measurement problem and the problem of nonlocal action. But if the outcome of a quantum measurement is not an absolute fact, then why should the statistics of such outcomes give us any objective reason to accept quantum theory? One can describe extensions of the scenario of Wigner’s friend in which a statement expressing the outcome of a quantum measurement would be true relative to one such context but not relative to another. However, physical conditions in our world prevent us from realizing such scenarios. Since the outcome of every actual quantum measurement is certified at what is essentially a single context of assessment, the outcome relative to that context is an objective fact in the only sense that matters for science. We should accept quantum theory because the statistics these outcomes display are just those it leads us to expect.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emergence-Free Duality: Phonons and Vibrating Atoms in Crystalline Solids","authors":"Sebastian Fortin, Matías Pasqualini","doi":"10.1007/s10701-025-00834-5","DOIUrl":"10.1007/s10701-025-00834-5","url":null,"abstract":"<div><p>The crystalline solids admit two models: the one of vibrating atoms and the one of phonons. The model of phonons allows explaining certain properties of crystalline solids that the model of vibrating atoms does not allow. Usually, the model of phonons is assigned a diminished ontological status as quasi-particles. Recently, there has been a proposal to homologate the ontological status of phonons with that of emergent particles, such as photons. In this article, this proposal will be critically examined, and it will be proposed that the model of phonons and the model of vibrating atoms could be considered in ontological parity.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comment on a No-Go Theorem for (psi )-Ontic Models","authors":"Laurens Walleghem, Shashaank Khanna, Rutvij Bhavsar","doi":"10.1007/s10701-025-00836-3","DOIUrl":"10.1007/s10701-025-00836-3","url":null,"abstract":"<div><p>In a recent paper [Carcassi, Oldofredi and Aidala, Found Phys 54, 14 (2024)] it is claimed that the whole Harrigan–Spekkens framework of ontological models is inconsistent with quantum theory. They show this by showing that all pure quantum states in <span>(psi )</span>-ontic models must be orthogonal. In this note, we identify some crucial assumptions that lack physical motivation in their argument to the extent that the main claim is incorrect.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A proof that no-signalling implies microcausality in quantum field theory","authors":"Antoine Soulas","doi":"10.1007/s10701-025-00832-7","DOIUrl":"10.1007/s10701-025-00832-7","url":null,"abstract":"<div><p>We study some logical interrelationships between fundamental properties in (relativistic) quantum theories. An operational no-signalling condition is first introduced in the context of quantum mechanics, where we prove its equivalence to an apparently weaker version restricted to ideal measurements, and to a property of factorization of the evolution unitary operator. We then translate this condition in quantum field theory and prove that it implies both microcausality and the spin-statistics theorem, in the ideal case of pointwise measurements implemented in the projection postulate sense. This provides an argument (often invoked but apparently missing in the literature) to see microcausality as a necessary condition for the compatibility of spacelike separated operations.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relativistic Corrections to the Quantization of a Classical Spinning Particle with Constant Electric and Magnetic Fields","authors":"John French","doi":"10.1007/s10701-025-00833-6","DOIUrl":"10.1007/s10701-025-00833-6","url":null,"abstract":"<div><p>A quantization of classical spinning particle equations is carried out using the Euler angles of the particle. Relativistic corrections are found and compared to the Foldy–Wouthuysen transformation of the Dirac equation. We only consider constant linear electric and magnetic fields, and find agreement up to third order in <span>(1/{text{c}}^{2})</span>.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Extended Wigner’s Friend, Many-and Single-Worlds and Reasoning from Observation","authors":"Andrew Steane","doi":"10.1007/s10701-025-00831-8","DOIUrl":"10.1007/s10701-025-00831-8","url":null,"abstract":"<div><p>The concept of an isolated system, and Frauchiger and Renner’s extended ‘Wigner’s friend’ scenario are discussed. It is argued that: (i) it is questionable whether the approximation of the isolated system is valid when measurement-like processes are involved; (ii) one may infer, from Frauchiger and Renner’s thought-experiment, and similar thought-experiments, that any interpretation of quantum theory involving <i>subjective collapse</i> fails; (iii) this does not distinguish single-world from many-world (relative-state) interpretations of quantum theory; (iv) reasoning from observations has to take into account the possible quantum-erasure of those observations if it is to be valid reasoning; (v) a single-world interpretation is valid if certain kinds of outcome are not quantum-erased in the future.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-025-00831-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phenomenology of Holography via Quantum Coherence on Causal Horizons","authors":"Ohkyung Kwon","doi":"10.1007/s10701-025-00827-4","DOIUrl":"10.1007/s10701-025-00827-4","url":null,"abstract":"<div><p>There is much recent development towards interferometric measurements of holographic quantum uncertainties in an emergent background space-time. Despite increasing promise for the target detection regime of Planckian strain power spectral density, the foundational insights of the motivating theories have not been connected to a phenomenological model of observables measured in a realistic experiment. This work proposes a candidate model, based on the central hypothesis that all horizons are universal boundaries of coherent quantum information — where the decoherence of space-time happens for the observer. The prediction is inspired by ’t Hooft’s algebra for black hole information that gives coherent states on horizons, whose spatial correlations were shown by Verlinde and Zurek to also appear on holographic fluctuations of causal boundaries in flat space-time (conformal Killing horizons). Time-domain correlations are projected from Planckian jitters whose coherence scales match causal diamonds, motivated by Banks’ framework for the emergence of space-time and locality. The universality of this coherence on causal horizons compels a multimodal research program probing concordant signatures: An analysis of cosmological data to probe primordial correlations, motivated by Hogan’s interpretation of well-known CMB anomalies as coherent fluctuations on the inflationary horizon, and upcoming 3D interferometers to probe causal diamonds in flat space-time. Candidate interferometer geometries are presented, with a modeled frequency spectrum for each design.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of Accelerating Expansion: Philosophy and Physics with a Positive Cosmological Constant, by Gordon Belot","authors":"Franciszek Cudek, James Read","doi":"10.1007/s10701-025-00822-9","DOIUrl":"10.1007/s10701-025-00822-9","url":null,"abstract":"","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Does Quantum Information Require Additional Structure?","authors":"Ryszard Horodecki","doi":"10.1007/s10701-025-00828-3","DOIUrl":"10.1007/s10701-025-00828-3","url":null,"abstract":"<div><p>We consider the status of quantum information in the quantum theory and based on the correspondence principle, we propose an interpretation of the wave function as a mathematical representation of quantum information. We consider Clauser’s analysis of incompatibility formulations of quantum theory in laboratory space and configuration space in the context of local realism. Then, we introduce the hypothesis of quantum space of directly unobserved relations, which precede quantum correlations, and are compatible with the Reichenbach common cause principle. The possible implications of the hypothesis are discussed in the context of the latest experimental and theoretical results on the dynamics of entanglement formation in helium atoms. Finally, we present the Chyliński model as an example of quantum relational continuum space, which predicts potentially measurable effects for the bound states.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unitary Time Evolution in Quantum Mechanics is a Stronger Physical Postulate than Linear Time Evolution","authors":"Edward Parker","doi":"10.1007/s10701-024-00818-x","DOIUrl":"10.1007/s10701-024-00818-x","url":null,"abstract":"<div><p>Discussions of quantum mechanics often loosely claim that time evolution logically must be unitary, in order for the probabilistic interpretation of the amplitudes of the state vector to make sense at all times. We discuss from first principles whether this claim is true: if we assume only that the time-evolution operator is <i>linear</i>, then does the stronger requirement that it be <i>unitary</i> follow from the other axioms of quantum mechanics? The answer is subtle. We discuss two mathematically distinct but physically equivalent formulations of the axioms of quantum mechanics, and consider generalizing each to postulate only that time evolution is linear. Within one formulation, the unitarity of time evolution follows logically from the other axioms – but within the other formulation, it does not. Allowing the time-evolution operator to be (a priori) arbitrarily linear does not change the physical observables in one formulation of quantum mechanics, but changes the other formulation to a <i>distinct</i> (internally consistent) physical theory that allows new phenomenology like (e.g.) faster-than-light communication. Therefore, the unitarity of time evolution is arguably better thought of as a logically independent and experimentally falsifiable axiom of quantum mechanics, not as a tautological consequence of the other axioms.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00818-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}