Deriving Ontological Statements from the Unnatural Higgs Mass

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Johannes Branahl
{"title":"Deriving Ontological Statements from the Unnatural Higgs Mass","authors":"Johannes Branahl","doi":"10.1007/s10701-025-00852-3","DOIUrl":null,"url":null,"abstract":"<div><p>We provide novel, metatheoretical arguments strengthening the position that the naturalness problem of the light Higgs mass is a pseudo-problem: Under one assumption, no physics beyond the standard model of particle physics is needed to explain the small value of the Higgs boson. By evaluating previous successes of the guiding principle of technical naturalness, we restrict its applicability to non-fundamental phenomena in the realm of provisional theories within limited energy scales. In view of further breaches of autonomy of scales in apparently fundamental phenomena outside particle physics, the hierarchy problem of the Higgs mass is instead reinterpreted as an indication of the ontologically fundamental status of the Higgs boson. Applying the concept of robustness of theoretical elements under theory changes by Worrall and Williams justifies this seemingly contradictory attribution within the effective theories of the standard model of particle physics. Moreover, we argue that the ongoing naturalness debate about the Higgs mass is partly based on the adherence to the methodology of effective theories (often claimed to be universally applicable), for which there is no justification when dealing with presumably fundamental phenomena such as the Higgs mechanism, even if it is embedded into an effective theory.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00852-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We provide novel, metatheoretical arguments strengthening the position that the naturalness problem of the light Higgs mass is a pseudo-problem: Under one assumption, no physics beyond the standard model of particle physics is needed to explain the small value of the Higgs boson. By evaluating previous successes of the guiding principle of technical naturalness, we restrict its applicability to non-fundamental phenomena in the realm of provisional theories within limited energy scales. In view of further breaches of autonomy of scales in apparently fundamental phenomena outside particle physics, the hierarchy problem of the Higgs mass is instead reinterpreted as an indication of the ontologically fundamental status of the Higgs boson. Applying the concept of robustness of theoretical elements under theory changes by Worrall and Williams justifies this seemingly contradictory attribution within the effective theories of the standard model of particle physics. Moreover, we argue that the ongoing naturalness debate about the Higgs mass is partly based on the adherence to the methodology of effective theories (often claimed to be universally applicable), for which there is no justification when dealing with presumably fundamental phenomena such as the Higgs mechanism, even if it is embedded into an effective theory.

从非自然希格斯质量推导本体论陈述
我们提供了新颖的、元理论的论据,加强了轻希格斯质量的自然性问题是一个伪问题的立场:在一个假设下,不需要超越粒子物理学标准模型的物理学来解释希格斯玻色子的小值。通过评价技术自然性指导原则以前的成功,我们限制了它在有限能量尺度的临时理论领域中的非基本现象的适用性。鉴于在粒子物理学之外明显的基本现象中尺度自主性的进一步破坏,希格斯质量的层次问题被重新解释为希格斯玻色子的本体论基本地位的指示。运用Worrall和Williams在理论变化下理论元素的鲁棒性概念,在粒子物理标准模型的有效理论中证明了这一看似矛盾的归因。此外,我们认为正在进行的关于希格斯质量的自然性争论部分是基于对有效理论方法的坚持(通常声称是普遍适用的),在处理诸如希格斯机制这样的基本现象时,没有理由,即使它被嵌入到一个有效的理论中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信