{"title":"作为局部现实模型的Weyl-Wigner表示中的电磁场量子理论","authors":"Emilio Santos","doi":"10.1007/s10701-025-00835-4","DOIUrl":null,"url":null,"abstract":"<div><p>I revisit the Wigner (or Weyl–Wigner, WW) representation of the quantum electromagnetic field. I show that, assuming that Fock states are just mathematical concepts devoid of physical reality, WW suggests a realistic interpretation which turns out to be (classical) Maxwell theory with the assumption that there is a random radiation filling space, the vacuum field. I elucidate why, in sharp contrast, non-relativistic quantum mechanics of particles does not admit a realistic interpretation via WW. I interpret experiments involving entangled light beams within WW, in particular optical tests of Bell inequalities. I show that WW provides clues in order to construct local models for those experiments. I give arguments why Bell definition of local realism is not general enough.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-025-00835-4.pdf","citationCount":"0","resultStr":"{\"title\":\"The Quantum Theory of the Electromagnetic Field in the Weyl–Wigner Representation as a Local Realistic Model\",\"authors\":\"Emilio Santos\",\"doi\":\"10.1007/s10701-025-00835-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>I revisit the Wigner (or Weyl–Wigner, WW) representation of the quantum electromagnetic field. I show that, assuming that Fock states are just mathematical concepts devoid of physical reality, WW suggests a realistic interpretation which turns out to be (classical) Maxwell theory with the assumption that there is a random radiation filling space, the vacuum field. I elucidate why, in sharp contrast, non-relativistic quantum mechanics of particles does not admit a realistic interpretation via WW. I interpret experiments involving entangled light beams within WW, in particular optical tests of Bell inequalities. I show that WW provides clues in order to construct local models for those experiments. I give arguments why Bell definition of local realism is not general enough.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"55 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10701-025-00835-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-025-00835-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00835-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The Quantum Theory of the Electromagnetic Field in the Weyl–Wigner Representation as a Local Realistic Model
I revisit the Wigner (or Weyl–Wigner, WW) representation of the quantum electromagnetic field. I show that, assuming that Fock states are just mathematical concepts devoid of physical reality, WW suggests a realistic interpretation which turns out to be (classical) Maxwell theory with the assumption that there is a random radiation filling space, the vacuum field. I elucidate why, in sharp contrast, non-relativistic quantum mechanics of particles does not admit a realistic interpretation via WW. I interpret experiments involving entangled light beams within WW, in particular optical tests of Bell inequalities. I show that WW provides clues in order to construct local models for those experiments. I give arguments why Bell definition of local realism is not general enough.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.