{"title":"局部现实主义的图解形式","authors":"James Fullwood","doi":"10.1007/s10701-025-00851-4","DOIUrl":null,"url":null,"abstract":"<div><p>Given two parties performing experiments in separate laboratories, we provide a diagrammatic formulation of what it means for the joint statistics of their experiments to satisfy local realism. In particular, we show that the principles of locality and realism are both captured by a single commutative diagram in the category of probability-preserving maps between finite probability spaces, and we also show that an assumption of such a diagrammatic formulation of local realism implies the standard CHSH inequality associated with dichotomic random variables. As quantum theory is known not to satisfy local realism, our formulation of local realism in terms of commutative diagrams provides yet another way in which the notion of non-commutativity plays a fundamental role in quantum theory. We note that we do not assume any prior knowledge of category theory or quantum theory, as this work is intended for philosophers, mathematicians and physicists alike.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Diagrammatic Formulation of Local Realism\",\"authors\":\"James Fullwood\",\"doi\":\"10.1007/s10701-025-00851-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given two parties performing experiments in separate laboratories, we provide a diagrammatic formulation of what it means for the joint statistics of their experiments to satisfy local realism. In particular, we show that the principles of locality and realism are both captured by a single commutative diagram in the category of probability-preserving maps between finite probability spaces, and we also show that an assumption of such a diagrammatic formulation of local realism implies the standard CHSH inequality associated with dichotomic random variables. As quantum theory is known not to satisfy local realism, our formulation of local realism in terms of commutative diagrams provides yet another way in which the notion of non-commutativity plays a fundamental role in quantum theory. We note that we do not assume any prior knowledge of category theory or quantum theory, as this work is intended for philosophers, mathematicians and physicists alike.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"55 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-025-00851-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00851-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Given two parties performing experiments in separate laboratories, we provide a diagrammatic formulation of what it means for the joint statistics of their experiments to satisfy local realism. In particular, we show that the principles of locality and realism are both captured by a single commutative diagram in the category of probability-preserving maps between finite probability spaces, and we also show that an assumption of such a diagrammatic formulation of local realism implies the standard CHSH inequality associated with dichotomic random variables. As quantum theory is known not to satisfy local realism, our formulation of local realism in terms of commutative diagrams provides yet another way in which the notion of non-commutativity plays a fundamental role in quantum theory. We note that we do not assume any prior knowledge of category theory or quantum theory, as this work is intended for philosophers, mathematicians and physicists alike.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.