{"title":"Co-authorship in chemistry at the turn of the twentieth century: the case of Theodore W. Richards","authors":"K. Brad Wray","doi":"10.1007/s10698-023-09491-w","DOIUrl":"10.1007/s10698-023-09491-w","url":null,"abstract":"<div><p>It is widely recognized that conceptual and theoretical innovations and the employment of new instruments and experimental techniques are important factors in explaining the growth of scientific knowledge in chemistry. This study examines another dimension of research in chemistry, collaboration and co-authorship. I focus specifically on Theodore Richards’ career and publications. During the period in which Richards worked, co-authorship was beginning to become more common than it had been previously. Richards was the first American chemist to be awarded a Nobel Prize and he was at the forefront in this new trend in chemistry. He collaborated more than was typical for his time, with many scientists, in different sized groups, and he often had persistent collaborative relationships, extending over a number of years. Further, it appears that these collaborations benefited Richards, his collaborators, and the field of chemistry as a whole.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"26 1","pages":"75 - 88"},"PeriodicalIF":1.8,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138559768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Johann Rudolph Glauber: the royals’ alchemist and his secret recipes","authors":"Curt Wentrup","doi":"10.1007/s10698-023-09493-8","DOIUrl":"10.1007/s10698-023-09493-8","url":null,"abstract":"<div><p>Compelling evidence is presented that Glauber worked as a <i>laborator</i> (laboratory assistant) for Landgrave Georg of Hesse-Darmstadt from 1632/33 till he was appointed apothecary in Giessen in 1635. During this time, he was also used as <i>laborator</i> by the landgrave’s personal physician, Helwig Dieterich. Glauber became a famous chemist, whose alchemical secrets were keenly solicited by King Frederik III of Denmark, Queen Christina of Sweden, and, according to the 1662 diary of Ole Borch, King Charles II of England. A 1689 letter to Queen Christina contains detailed descriptions of Glauber’s alkahest, his decomposition and redintegration of saltpeter, and his ‘most secret sal armoniacum’, which is interpreted here for the first time.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"26 1","pages":"3 - 13"},"PeriodicalIF":1.8,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138552598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Celebrating the birth of De Donder’s chemical affinity (1922–2022): from the uncompensated heat to his Ave Maria","authors":"Alessio Rocci","doi":"10.1007/s10698-023-09488-5","DOIUrl":"10.1007/s10698-023-09488-5","url":null,"abstract":"<div><p>Théophile De Donder, a Belgian mathematician born in Brussels, elaborated two important ideas that created a bridge between thermodynamics and chemical kinetics. He invented the concept of the degree of advancement of a reaction, and, in 1922, he provided a precise mathematical form to the already known chemical affinity by translating Clausius’s uncompensated heat into formal language. These concepts merge in an important inequality that was the starting point for the formalization of non-equilibrium thermodynamics. The present article aims to reconstruct how De Donder elaborated his ideas and developed them by exploring his teaching activity and its connection with his scientific production. Furthermore, it emphasizes the role played by the discussions with his disciples who became his collaborators. The paper analyzes De Donder’s efforts in participating in the second Solvay Chemistry Council in 1925 to call the attention of chemists to his mathematical approach. We explain why his work did not receive much attention at the time, and how, despite this, his formalization of chemical affinity became the basis for the birth of the so-called <i>Brussels school of thermodynamics</i>.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"26 1","pages":"37 - 73"},"PeriodicalIF":1.8,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Centenary Workshop on the Bifurcation of Acidity -Protonism vs. Electronism","authors":"Klaus Ruthenberg","doi":"10.1007/s10698-023-09490-x","DOIUrl":"10.1007/s10698-023-09490-x","url":null,"abstract":"","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"26 2","pages":"193 - 196"},"PeriodicalIF":1.8,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-023-09490-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136229693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Are acids natural kinds?","authors":"Pieter Thyssen","doi":"10.1007/s10698-023-09485-8","DOIUrl":"10.1007/s10698-023-09485-8","url":null,"abstract":"<div><p>Are acids natural kinds? Or are they merely relevant kinds? Although acidity has been one of the oldest and most important concepts in chemistry, surprisingly little ink has been spilled on the natural kind question. I approach the question from the perspective of microstructural essentialism. After explaining why both Brønsted acids and Lewis acids are considered functional kinds, I address the challenges of multiple realization and multiple determination. Contra Manafu and Hendry, I argue that the stereotypical properties of acids are not multiply realized. Instead, given the equivalence between the proton-donating and electron-accepting mechanisms of Brønsted and Lewis, respectively, I show that acidity as a property type can be identified with a unique microstructural property, namely the presence of a LUMO or other low energy empty orbital. In doing so, I defend the view that the Lewis theory encompasses Brønsted–Lowry, and that all Brønsted acids are also Lewis acids. Contra Hacking and Chang, I thus maintain that the different concepts of acidity do not crosscut, and that the hierarchy requirement is met. Finally, by characterizing natural kinds as powerful objects and by adopting a dispositional view of functions, I illustrate how the microessentialist can make sense of the latent and relational character of most acids. In sum, I contend that acids are genuine natural kinds, even for the microstructural essentialist.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"26 2","pages":"225 - 253"},"PeriodicalIF":1.8,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135512875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bifurcations","authors":"Klaus Ruthenberg","doi":"10.1007/s10698-023-09484-9","DOIUrl":"10.1007/s10698-023-09484-9","url":null,"abstract":"<div><p>In this short essay I address the central topic of the Centenary Workshop on Acidity, that is the relations of the classical protonist acid–base theory by Brønsted and the electronist approach by Lewis. Emphasis is laid on the empirical background of both approaches and the over-theoretization of chemical phenomena (essentialism) is criticized.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"26 2","pages":"213 - 224"},"PeriodicalIF":1.8,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-023-09484-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135885168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial 75","authors":"Eric R. Scerri","doi":"10.1007/s10698-023-09489-4","DOIUrl":"10.1007/s10698-023-09489-4","url":null,"abstract":"","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"25 3","pages":"341 - 342"},"PeriodicalIF":0.9,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136254560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Usanovich and Nernst colliding: inconsistencies in the all-in-one acid–base concept?","authors":"Gerd-Uwe Flechsig","doi":"10.1007/s10698-023-09482-x","DOIUrl":"10.1007/s10698-023-09482-x","url":null,"abstract":"<div><p>Among the many acid-base concepts, the theory of Usanovich is one of the least known despite the most general scope including almost all chemical reaction types and even redox chemistry. Published 1939 in a Soviet journal in Russian language, it gained little immediate attention, and was later criticized mainly as being too broad in scope. Although several articles recently remembered Usanovich and his acid–base theory, one major inconsistency again was overseen: the electron is put in a row along with anions. Chemical history probably correctly puts this concept aside, also because it added little explanation capabilities beyond the elaborated considerations of the simultaneously published acid–base theory of Gilbert N. Lewis which was later refined by Pearson (hard and soft acids and bases, “HSAB”). A modified version of the core of Usanovich' concept is finally discussed. It combines the classic protic and aprotic acid–base concepts on the foundations of Lewis’ and Pearsons ideas.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"26 2","pages":"197 - 202"},"PeriodicalIF":1.8,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-023-09482-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135592416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"“Sharp of taste”: the concept of acidity in the Greek system of natural explanation","authors":"Apostolos K. Gerontas","doi":"10.1007/s10698-023-09483-w","DOIUrl":"10.1007/s10698-023-09483-w","url":null,"abstract":"<div><p>Acidic substances were known for thousands of years, and their macroscopic-sensory characteristics were reflected by words in most ancient languages. In the Western canon, the history of the concept of acidity goes back to Ancient Greece. In Greek, the word associated with acidity from its early literary references was ὀξύς (“sharp”), and still in contemporary Greek the words “sour” and “acidic” have the same root. This paper makes a short presentation of the appearance of the abstract concept in the works of Plato and Aristotle and relates it, on one side to the already existing theological-philosophical tradition, starting with Hesiod´s Theogony and on the other, to the then available to the Greeks organoleptic experiences of sourness-vinegar and sour milk.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":"26 2","pages":"203 - 211"},"PeriodicalIF":1.8,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-023-09483-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135739017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}