Tissue Engineering Part A最新文献

筛选
英文 中文
Metformin Treatment of Macrophages Increases Microvessel Growth in Three-Dimensional Hydrogel Coculture. 二甲双胍处理巨噬细胞可促进三维水凝胶共培养中的微血管生长
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-08-01 Epub Date: 2024-03-05 DOI: 10.1089/ten.TEA.2023.0327
Justin Silberman, Michael Olagbiyan, Erika Moore
{"title":"Metformin Treatment of Macrophages Increases Microvessel Growth in Three-Dimensional Hydrogel Coculture.","authors":"Justin Silberman, Michael Olagbiyan, Erika Moore","doi":"10.1089/ten.TEA.2023.0327","DOIUrl":"10.1089/ten.TEA.2023.0327","url":null,"abstract":"<p><p>The global population is aging rapidly, posing unprecedented challenges to health care systems. This study investigates the often-overlooked role of macrophages in microvascular dysfunction associated with aging. We use a three-dimensional <i>in vitro</i> hydrogel model to assess the effects of both age and metformin, an anti-aging therapeutic, on macrophage interactions with microvasculature. Metformin's broad cellular impact is a subject of significant interest, yet its precise mechanisms remain unclear. Our research reveals that metformin treatment enhances genetic pathways associated with macrophage-mediated support of angiogenesis, resulting in increased microvessel density. Of importance, monocyte chemoattractant protein-1 expression is upregulated with metformin treatment and positively correlated with microvascular volume, shedding light on a potential mechanism for metformin's promotion of macrophage support of vasculogenesis. This work not only uncovers metformin's impact on human macrophages but also supports its potential as an antiaging therapeutic, offering new avenues for combating age-related diseases.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"460-472"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139673757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rat Tracheal Cartilage Regeneration Using Mesenchymal Stem Cells Derived From Human iPS Cells. 利用源自人类 iPS 细胞的间充质干细胞再生大鼠气管软骨。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-07-29 DOI: 10.1089/ten.TEA.2024.0151
Keisuke Mizuno, Hiroe Ohnishi, Yo Kishimoto, Tsuyoshi Kojima, Shintaro Fujimura, Yoshitaka Kawai, Masayuki Kitano, Makoto Ikeya, Koichi Omori
{"title":"Rat Tracheal Cartilage Regeneration Using Mesenchymal Stem Cells Derived From Human iPS Cells.","authors":"Keisuke Mizuno, Hiroe Ohnishi, Yo Kishimoto, Tsuyoshi Kojima, Shintaro Fujimura, Yoshitaka Kawai, Masayuki Kitano, Makoto Ikeya, Koichi Omori","doi":"10.1089/ten.TEA.2024.0151","DOIUrl":"10.1089/ten.TEA.2024.0151","url":null,"abstract":"<p><p>Tracheal cartilage provides structural support to the airways to enable breathing. However, it can become damaged or impaired, sometimes requiring surgical resection and reconstruction. Previously, we clinically applied an artificial trachea composed of a polypropylene mesh and collagen sponge, with a favorable postoperative course. However, the artificial trachea presents a limitation, as the mesh is not biodegradable and cannot be used in pediatric patients. Compared to a polypropylene mesh, regenerated cartilage represents an ideal material for reconstruction of the damaged trachea. The use of mesenchymal stem cells (MSCs) as a source for cartilage regeneration has gained widespread acceptance, but challenges such as the invasiveness of harvesting and limited cell supply persist. Therefore, we focused on the potential of human-induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) for tracheal cartilage regeneration. In this study, we aimed to regenerate tracheal cartilage on an artificial trachea as a preliminary step to replace the polypropylene mesh. iMSCs were induced from hiPSCs through neural crest cells and transplanted with a polypropylene mesh covered with a collagen sponge into the damaged tracheal cartilage in immunodeficient rats. Human nuclear antigen (HNA)-positive cells were observed in all six rats at 4 weeks and in six out of seven rats at 12 weeks after transplantation, indicating that transplanted iMSCs survived within the tracheal cartilage defects of rats. The HNA-positive cells coexpressed SOX9, and type II collagen was detected around HNA-positive cells in four of six rats at 4 weeks and in three of seven rats at 12 weeks after transplantation, reflecting cartilage-like tissue regeneration. These results indicate that the transplanted iMSCs could differentiate into chondrogenic cells and promote tracheal cartilage regeneration. iMSC transplantation thus represents a promising approach for human tracheal reconstruction.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Passaging Primary Skeletal Muscle Cell Isolates on the Engineering of Skeletal Muscle. 原代骨骼肌细胞离体传代对骨骼肌工程学的影响
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-07-18 DOI: 10.1089/ten.TEA.2024.0044
Olga M Wroblewski, Christopher S Kennedy, Emmanuel E Vega-Soto, Celeste E Forester, Eileen Y Su, Matthew H Nguyen, Paul S Cederna, Lisa M Larkin
{"title":"Impact of Passaging Primary Skeletal Muscle Cell Isolates on the Engineering of Skeletal Muscle.","authors":"Olga M Wroblewski, Christopher S Kennedy, Emmanuel E Vega-Soto, Celeste E Forester, Eileen Y Su, Matthew H Nguyen, Paul S Cederna, Lisa M Larkin","doi":"10.1089/ten.TEA.2024.0044","DOIUrl":"10.1089/ten.TEA.2024.0044","url":null,"abstract":"<p><p>Volumetric muscle loss (VML) is a clinical state that results in impaired skeletal muscle function. Engineered skeletal muscle can serve as a treatment for VML. Currently, large biopsies are required to achieve the cells necessary for the fabrication of engineered muscle, leading to donor-site morbidity. Amplification of cell numbers using cell passaging may increase the usefulness of a single muscle biopsy for engineering muscle tissue. In this study, we evaluated the impact of passaging cells obtained from donor muscle tissue by analyzing characteristics of <i>in vitro</i> cellular growth and tissue-engineered skeletal muscle unit (SMU) structure and function. Human skeletal muscle cell isolates from three separate donors (P0-Control) were compared with cells passaged once (P1), twice (P2), or three times (P3) by monitoring SMU force production and determining muscle content and structure using immunohistochemistry. Data indicated that passaging decreased the number of satellite cells and increased the population doubling time. P1 SMUs had slightly greater contractile force and P2 SMUs showed statistically significant greater force production compared with P0 SMUs with no change in SMU muscle content. In conclusion, human skeletal muscle cells can be passaged twice without negatively impacting SMU muscle content or contractile function, providing the opportunity to potentially create larger SMUs from smaller biopsies, thereby producing clinically relevant sized grafts to aid in VML repair.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quality Assessment by Bile Composition in Normothermic Machine Perfusion of Rat Livers. 通过常温机器灌流大鼠肝脏中的胆汁成分评估质量。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-07-03 DOI: 10.1089/ten.TEA.2024.0048
Vanessa Muth, Felix Stobl, Julian Michelotto, Linda Gilles, Jennifer A Kirwan, Alina Eisenberger, Jeremy Marchand, Nathalie N Roschke, Simon Moosburner, Johann Pratschke, Igor M Sauer, Nathanael Raschzok, Joseph Mgv Gassner
{"title":"Quality Assessment by Bile Composition in Normothermic Machine Perfusion of Rat Livers.","authors":"Vanessa Muth, Felix Stobl, Julian Michelotto, Linda Gilles, Jennifer A Kirwan, Alina Eisenberger, Jeremy Marchand, Nathalie N Roschke, Simon Moosburner, Johann Pratschke, Igor M Sauer, Nathanael Raschzok, Joseph Mgv Gassner","doi":"10.1089/ten.TEA.2024.0048","DOIUrl":"10.1089/ten.TEA.2024.0048","url":null,"abstract":"<p><p><b><i>Background:</i></b> The persistent challenge of organ scarcity in liver transplantation leads to an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) is used for improved preservation. Due to the mimicked <i>in vivo</i> conditions during normothermic machine perfusion, the liver is metabolically active, which allows quality assessment during perfusion. Bile seems to be of rising interest in clinical studies, as it is easily collectible for analysis. As there are currently no data on biliary bile acids during NMP, the primary objective of this study was to use our experimental rodent NMP model to assess changes in bile composition through organ damage during perfusion to inform clinical evaluation of donor organs during NMP. <b><i>Methods:</i></b> Thirty livers from male Sprague-Dawley rats in five groups underwent 6 h of NMP using either erythrocyte-supplemented DMEM or Steen solution, with or without 30 min of warm ischemia time (WIT). We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at 3-hour intervals. Bile samples were analyzed for biliary pH, LDH, and gamma glutamyltransferase, as well as biliary bile acids via mass spectrometry and UHPLC. <b><i>Results:</i></b> Compared with regular livers, liver injury parameters were significantly higher in our donation after circulatory death (DCD) model. Bile production was significantly reduced in livers exposed to WIT, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers experiencing WIT. However, regular livers produced a higher total amount of biliary bile acids during perfusion. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced during perfusion due to the missing enterohepatic circulation. <b><i>Conclusions:</i></b> WIT-induced liver injury affects bile composition within our small-animal NMP model. We hypothesize this phenomenon to be attributed to the energy-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile. Our results may inform clinical studies, in which biliary bile acids might have a potential as a quantifiable viability marker in human NMP liver transplantation studies.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine. 生物打印:再生医学中的机械稳定和加固策略。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-07-01 Epub Date: 2024-02-09 DOI: 10.1089/ten.TEA.2023.0239
Ashleigh Ballard, Rebecca Patush, Jenesis Perez, Carmen Juarez, Alina Kirillova
{"title":"Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine.","authors":"Ashleigh Ballard, Rebecca Patush, Jenesis Perez, Carmen Juarez, Alina Kirillova","doi":"10.1089/ten.TEA.2023.0239","DOIUrl":"10.1089/ten.TEA.2023.0239","url":null,"abstract":"<p><p>Bioprinting describes the printing of biomaterials and cell-laden or cell-free hydrogels with various combinations of embedded bioactive molecules. It encompasses the precise patterning of biomaterials and cells to create scaffolds for different biomedical needs. There are many requirements that bioprinting scaffolds face, and it is ultimately the interplay between the scaffold's structure, properties, processing, and performance that will lead to its successful translation. Among the essential properties that the scaffolds must possess-adequate and appropriate application-specific chemical, mechanical, and biological performance-the mechanical behavior of hydrogel-based bioprinted scaffolds is the key to their stable performance <i>in vivo</i> at the site of implantation. Hydrogels that typically constitute the main scaffold material and the medium for the cells and biomolecules are very soft, and often lack sufficient mechanical stability, which reduces their printability and, therefore, the bioprinting potential. The aim of this review article is to highlight the reinforcement strategies that are used in different bioprinting approaches to achieve enhanced mechanical stability of the bioinks and the printed scaffolds. Enabling stable and robust materials for the bioprinting processes will lead to the creation of truly complex and remarkable printed structures that could accelerate the application of smart, functional scaffolds in biomedical settings. Impact statement Bioprinting is a powerful tool for the fabrication of 3D structures and scaffolds for biomedical applications. It has gained tremendous attention in recent years, and the bioink library is expanding to include more and more material combinations. From the practical application perspective, different properties need to be considered, such as the printed structure's chemical, mechanical, and biological performances. Among these, the mechanical behavior of the printed constructs is critical for their successful translation into the clinic. The aim of this review article is to explore the different reinforcement strategies used for the mechanical stabilization of bioinks and bioprinted structures.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"387-408"},"PeriodicalIF":3.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progenitor Cell Sources for 3D Bioprinting of Lymphatic Vessels and Potential Clinical Application. 淋巴管3D生物打印的祖细胞来源及其潜在的临床应用。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-07-01 Epub Date: 2023-12-22 DOI: 10.1089/ten.TEA.2023.0204
Inazio Arriola-Alvarez, Ibon Jaunarena, Ander Izeta, Héctor Lafuente
{"title":"Progenitor Cell Sources for 3D Bioprinting of Lymphatic Vessels and Potential Clinical Application.","authors":"Inazio Arriola-Alvarez, Ibon Jaunarena, Ander Izeta, Héctor Lafuente","doi":"10.1089/ten.TEA.2023.0204","DOIUrl":"10.1089/ten.TEA.2023.0204","url":null,"abstract":"<p><p>The lymphatic system maintains tissue fluid homeostasis and it is involved in the transport of nutrients and immunosurveillance. It also plays a pivotal role in both pathological and regenerative processes. Lymphatic development in the embryo occurs by polarization and proliferation of lymphatic endothelial cells from the lymph sacs, that is, lymphangiogenesis. Alternatively, lymphvasculogenesis further contributes to the formation of lymphatic vessels. In adult tissues, lymphatic formation rarely occurs under physiological conditions, being restricted to pathological processes. In lymphvasculogenesis, progenitor cells seem to be a source of lymphatic vessels. Indeed, mesenchymal stem cells, adipose stem cells, endothelial progenitor cells, and colony-forming endothelial cells are able to promote lymphatic regeneration by different mechanisms, such as direct differentiation and paracrine effects. In this review, we summarize what is known on the diverse stem/progenitor cell niches available for the lymphatic system, emphasizing the potential that these cells hold for lymphatic tissue engineering through 3D bioprinting and their translation to clinical application.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"353-366"},"PeriodicalIF":3.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart Design for Hybrid Bioprinting of Scalable and Viable Tissue Constructs. 可伸缩和可存活组织结构的混合生物打印的智能设计。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-07-01 Epub Date: 2023-11-29 DOI: 10.1089/ten.TEA.2023.0188
Niji Nandakumar, Subramania Iyyer, Thadi Mohan, Shantikumar V Nair, Binulal N Sathy
{"title":"Smart Design for Hybrid Bioprinting of Scalable and Viable Tissue Constructs.","authors":"Niji Nandakumar, Subramania Iyyer, Thadi Mohan, Shantikumar V Nair, Binulal N Sathy","doi":"10.1089/ten.TEA.2023.0188","DOIUrl":"10.1089/ten.TEA.2023.0188","url":null,"abstract":"<p><p>Hybrid bioprinting uses sequential printing of melt-extruded biodegradable thermoplastic polymer and cell-encapsulated bioink in a predesigned manner using high- and low-temperature print heads for the fabrication of robust three-dimensional (3D) biological constructs. However, the high-temperature print head and melt-extruded polymer cause irreversible thermal damage to the bioprinted cells, and it affects viability and functionality of 3D bioprinted biological constructs. Thus, there is an urgent need to develop innovative approaches to protect the bioprinted cells, coming into contact or at close proximities to the melt-extruded thermoplastic polymer and the high-temperature print head during hybrid bioprinting. Therefore, this study investigated the potential of iterating the structural architecture pattern (SAP) of melt-printed thermoplastic layers and the cell printing pattern (CPP) to protect the cells from temperature-associated damage during hybrid bioprinting. A novel SAP for printing the thermoplastic polymer and an associated CPP for minimizing thermal damage to the 3D bioprinted construct have been developed. The newly developed SAP- and CPP-based hybrid bioprinted biological constructs showed significantly low thermal damage compared to conventionally hybrid bioprinted biological constructs. The results from this study suggest that the newly developed SAP and CPP can be an improved hybrid bioprinting strategy for developing living constructs at the human scale.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"342-352"},"PeriodicalIF":3.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71489481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing Biomimetic 3D-Printed Osteochondral Scaffolds for Enhanced Load-Bearing Capacity. 设计仿生三维打印骨软骨支架以增强承重能力
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-07-01 Epub Date: 2024-04-17 DOI: 10.1089/ten.TEA.2023.0217
Robert H Choe, Blake C Kuzemchak, George J Kotsanos, Eman Mirdamadi, Mary Sherry, Eoin Devoy, Tao Lowe, Jonathan D Packer, John P Fisher
{"title":"Designing Biomimetic 3D-Printed Osteochondral Scaffolds for Enhanced Load-Bearing Capacity.","authors":"Robert H Choe, Blake C Kuzemchak, George J Kotsanos, Eman Mirdamadi, Mary Sherry, Eoin Devoy, Tao Lowe, Jonathan D Packer, John P Fisher","doi":"10.1089/ten.TEA.2023.0217","DOIUrl":"10.1089/ten.TEA.2023.0217","url":null,"abstract":"<p><p>Osteoarthritis is a debilitating chronic joint disorder that affects millions of people worldwide. Since palliative and surgical treatments cannot completely regenerate hyaline cartilage within the articulating joint, osteochondral (OC) tissue engineering has been explored to heal OC defects. Utilizing computational simulations and three-dimensional (3D) printing, we aimed to build rationale around fabricating OC scaffolds with enhanced biomechanics. First, computational simulations revealed that interfacial fibrils within a bilayer alter OC scaffold deformation patterns by redirecting load-induced stresses toward the top of the cartilage layer. Principal component analysis revealed that scaffolds with 800 μm long fibrils (scaffolds 8A-8H) possessed optimal biomechanical properties to withstand compression and shear forces. While compression testing indicated that OC scaffolds with 800 μm fibrils did not have greater compressive moduli than other scaffolds, interfacial shear tests indicated that scaffold 8H possessed the greatest shear strength. Lastly, failure analysis demonstrated that yielding or buckling models describe interfacial fibril failure depending on fibril slenderness <i>S.</i> Specifically for scaffolds with packing density <i>n</i> = 6 and <i>n</i> = 8, the yielding failure model fits experimental loads with S < 10, while the buckling model fitted scaffolds with S < 10 slenderness. The research presented provides critical insights into designing 3D printed interfacial scaffolds with refined biomechanics toward improving OC tissue engineering outcomes.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"409-420"},"PeriodicalIF":3.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiologic Doses of Transforming Growth Factor-β Improve the Composition of Engineered Articular Cartilage. 生理剂量的 TGF-β 可改善人造关节软骨的组成。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-07-01 DOI: 10.1089/ten.TEA.2023.0360
Tianbai Wang, Sedat Dogru, Zhonghao Dai, Sung Yeon Kim, Nicholas A Vickers, Michael B Albro
{"title":"Physiologic Doses of Transforming Growth Factor-β Improve the Composition of Engineered Articular Cartilage.","authors":"Tianbai Wang, Sedat Dogru, Zhonghao Dai, Sung Yeon Kim, Nicholas A Vickers, Michael B Albro","doi":"10.1089/ten.TEA.2023.0360","DOIUrl":"10.1089/ten.TEA.2023.0360","url":null,"abstract":"<p><p>Conventionally, for cartilage tissue engineering applications, transforming growth factor beta (TGF-β) is administered at doses that are several orders of magnitude higher than those present during native cartilage development. While these doses accelerate extracellular matrix (ECM) biosynthesis, they may also contribute to features detrimental to hyaline cartilage function, including tissue swelling, type I collagen (COL-I) deposition, cellular hypertrophy, and cellular hyperplasia. In contrast, during native cartilage development, chondrocytes are exposed to moderate TGF-β levels, which serve to promote strong biosynthetic enhancements while mitigating risks of pathology associated with TGF-β excesses. Here, we examine the hypothesis that physiologic doses of TGF-β can yield neocartilage with a more hyaline cartilage-like composition and structure relative to conventionally administered supraphysiologic doses. This hypothesis was examined on a model system of reduced-size constructs (∅2 × 2 mm or ∅3 × 2 mm) comprised of bovine chondrocytes encapsulated in agarose, which exhibit mitigated TGF-β spatial gradients allowing for an evaluation of the intrinsic effect of TGF-β doses on tissue development. Reduced-size (∅2 × 2 mm or ∅3 × 2 mm) and conventional-size constructs (∅4-∅6 mm × 2 mm) were subjected to a range of physiologic (0.1, 0.3, 1 ng/mL) and supraphysiologic (3, 10 ng/mL) TGF-β doses. At day 56, the physiologic 0.3 ng/mL dose yielded reduced-size constructs with native cartilage-matched Young's modulus (E<sub>Y</sub>) (630 ± 58 kPa) and sulfated glycosaminoglycan (sGAG) content (5.9 ± 0.6%) while significantly increasing the sGAG-to-collagen ratio, leading to significantly reduced tissue swelling relative to constructs exposed to the supraphysiologic 10 ng/mL TGF-β dose. Furthermore, reduced-size constructs exposed to the 0.3 ng/mL dose exhibited a significant reduction in fibrocartilage-associated COL-I and a 77% reduction in the fraction of chondrocytes present in a clustered morphology, relative to the supraphysiologic 10 ng/mL dose (<i>p</i> < 0.001). E<sub>Y</sub> was significantly lower for conventional-size constructs exposed to physiologic doses due to TGF-β transport limitations in these larger tissues (<i>p</i> < 0.001). Overall, physiologic TGF-β appears to achieve an important balance of promoting requisite ECM biosynthesis, while mitigating features detrimental to hyaline cartilage function. While reduced-size constructs are not suitable for the repair of clinical-size cartilage lesions, insights from this work can inform TGF-β dosing requirements for emerging scaffold release or nutrient channel delivery platforms capable of achieving uniform delivery of physiologic TGF-β doses to larger constructs required for clinical cartilage repair.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biopatterning of 3D Cellular Model by Contactless Magnetic Manipulation for Cardiotoxicity Screening. 非接触式磁操纵三维细胞模型的生物图谱用于心脏毒性筛选。
IF 3.5 3区 医学
Tissue Engineering Part A Pub Date : 2024-07-01 Epub Date: 2023-12-15 DOI: 10.1089/ten.TEA.2023.0197
Rabia Onbas, Ahu Arslan Yildiz
{"title":"Biopatterning of 3D Cellular Model by Contactless Magnetic Manipulation for Cardiotoxicity Screening.","authors":"Rabia Onbas, Ahu Arslan Yildiz","doi":"10.1089/ten.TEA.2023.0197","DOIUrl":"10.1089/ten.TEA.2023.0197","url":null,"abstract":"<p><p>Impact statement Contactless manipulation and cell patterning techniques provide rapid and cost-effective three-dimensional (3D) cell culture model formation for tissue engineering applications. The present study introduces a new methodology that comprised alginate-based bioink to pattern cells via contactless magnetic manipulation to fabricate 3D cardiac structures. The developed cardiac model was evaluated in terms of Doxorubicin-induced cardiotoxicity and biopatterned 3D cardiac structures were found more resistant to drug exposure compared to two-dimensional control.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"367-376"},"PeriodicalIF":3.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信