Matrix-Bound Nanovesicles Promote Prohealing Immunomodulation Without Immunosuppression.

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Héctor Capella-Monsonís, Raphael J Crum, William D'Angelo, George S Hussey, Stephen F Badylak
{"title":"Matrix-Bound Nanovesicles Promote Prohealing Immunomodulation Without Immunosuppression.","authors":"Héctor Capella-Monsonís, Raphael J Crum, William D'Angelo, George S Hussey, Stephen F Badylak","doi":"10.1089/ten.tea.2024.0238","DOIUrl":null,"url":null,"abstract":"<p><p>Bioscaffolds composed of extracellular matrix (ECM) have been shown to promote a profound transition in macrophages and T-cells from a proinflammatory to a prohealing phenotype with associated site-appropriate and constructive tissue remodeling rather than scar tissue formation. Matrix-bound nanovesicles (MBV) are a distinct class of extracellular vesicles that can be isolated from the ECM and can recapitulate these immunomodulatory effects on myeloid cells <i>in vitro</i> and <i>in vivo</i>, as shown in multiple preclinical models of inflammatory-driven diseases. However, the effect of this MBV-mediated immunomodulation upon the ability to mount an adaptive immune response following pathogenic challenge is unknown. The present study assessed the humoral immune response with and without repeated MBV administration in a mouse model of <i>Streptococcus pneumoniae</i> vaccination and infection. Mice were immunized on day 0, followed by an intraperitoneal MBV or methotrexate (MTRX) injection the next day and weekly thereafter for 5 weeks. Antipneumococcal polysaccharide immuglobulin G and immuglobulin M titers were no different between the vaccine + MBV and the vaccine-only groups, in contrast to the decreased titers in the MTRX-treatment group. Fifty percent of animals treated with MBV were protected from lethal septic infection with <i>S. pneumoniae</i>, and MBV treatment altered the population of immune cells within the lung following sublethal intranasal infection. Macrophages derived from bone marrow mononuclear cells harvested from MBV-treated mice showed persistent immunomodulatory effects following <i>ex vivo</i> challenge with bacterial antigens. The results of this study show that MBV treatment does not compromise the ability to mount an adaptive immune response and suggest that MBV induce sustained immunomodulation in cells of the myeloid lineage.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tea.2024.0238","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Bioscaffolds composed of extracellular matrix (ECM) have been shown to promote a profound transition in macrophages and T-cells from a proinflammatory to a prohealing phenotype with associated site-appropriate and constructive tissue remodeling rather than scar tissue formation. Matrix-bound nanovesicles (MBV) are a distinct class of extracellular vesicles that can be isolated from the ECM and can recapitulate these immunomodulatory effects on myeloid cells in vitro and in vivo, as shown in multiple preclinical models of inflammatory-driven diseases. However, the effect of this MBV-mediated immunomodulation upon the ability to mount an adaptive immune response following pathogenic challenge is unknown. The present study assessed the humoral immune response with and without repeated MBV administration in a mouse model of Streptococcus pneumoniae vaccination and infection. Mice were immunized on day 0, followed by an intraperitoneal MBV or methotrexate (MTRX) injection the next day and weekly thereafter for 5 weeks. Antipneumococcal polysaccharide immuglobulin G and immuglobulin M titers were no different between the vaccine + MBV and the vaccine-only groups, in contrast to the decreased titers in the MTRX-treatment group. Fifty percent of animals treated with MBV were protected from lethal septic infection with S. pneumoniae, and MBV treatment altered the population of immune cells within the lung following sublethal intranasal infection. Macrophages derived from bone marrow mononuclear cells harvested from MBV-treated mice showed persistent immunomodulatory effects following ex vivo challenge with bacterial antigens. The results of this study show that MBV treatment does not compromise the ability to mount an adaptive immune response and suggest that MBV induce sustained immunomodulation in cells of the myeloid lineage.

基质结合纳米囊泡促进促愈合免疫调节而不抑制免疫。
由细胞外基质(ECM)组成的生物支架已被证明可以促进巨噬细胞和t细胞从促炎表型向促愈合表型的深刻转变,并伴有相关的部位适当和建设性的组织重塑,而不是瘢痕组织的形成。基质结合纳米囊泡(MBV)是一类独特的细胞外囊泡,可以从ECM中分离出来,并且可以在体外和体内重现这些对髓细胞的免疫调节作用,如炎症驱动疾病的多个临床前模型所示。然而,这种mbv介导的免疫调节对致病挑战后产生适应性免疫反应的能力的影响尚不清楚。本研究评估了肺炎链球菌接种和感染小鼠模型中反复注射和不注射MBV的体液免疫反应。小鼠在第0天免疫,第二天腹腔注射MBV或甲氨蝶呤(MTRX),此后每周注射一次,持续5周。抗肺炎球菌多糖免疫球蛋白G和免疫球蛋白M滴度在疫苗+ MBV组和仅疫苗组之间没有差异,而mtrx治疗组滴度降低。50%用MBV治疗的动物免受致命的肺炎链球菌脓毒性感染,MBV治疗改变了亚致命性鼻内感染后肺内的免疫细胞群。从mbv处理的小鼠骨髓单核细胞中提取的巨噬细胞在体外细菌抗原攻击后显示出持续的免疫调节作用。本研究结果表明,MBV治疗不会损害产生适应性免疫反应的能力,并提示MBV诱导髓系细胞的持续免疫调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信