Arnau Fabra , Oriol Guasch , Joan Baiges , Ramon Codina
{"title":"Approximation of acoustic black holes with finite element mixed formulations and artificial neural network correction terms","authors":"Arnau Fabra , Oriol Guasch , Joan Baiges , Ramon Codina","doi":"10.1016/j.finel.2024.104236","DOIUrl":"10.1016/j.finel.2024.104236","url":null,"abstract":"<div><p>Wave propagation in elastodynamic problems in solids often requires fine computational meshes. In this work we propose to combine stabilized finite element methods (FEM) with an artificial neural network (ANN) correction term to solve such problems on coarse meshes. Irreducible and mixed velocity–stress formulations for the linear elasticity problem in the frequency domain are first presented and discretized using a variational multiscale FEM. A non-linear ANN correction term is then designed to be added to the FEM algebraic matrix system and produce accurate solutions when solving elastodynamics on coarse meshes. As a case study we consider acoustic black holes (ABHs) on structural elements with high aspect ratios such as beams and plates. ABHs are traps for flexural waves based on reducing the structural thickness according to a power-law profile at the end of a beam, or within a two-dimensional circular indentation in a plate. For the ABH to function properly, the thickness at the termination/center must be very small, which demands very fine computational meshes. The proposed strategy combining the stabilized FEM with the ANN correction allows us to accurately simulate the response of ABHs on coarse meshes for values of the ABH order and residual thickness outside the training test, as well as for different excitation frequencies.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"241 ","pages":"Article 104236"},"PeriodicalIF":3.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142075909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A generalized Timoshenko beam with embedded rotation discontinuity coupled with a 3D macroelement to assess the vulnerability of reinforced concrete frame structures","authors":"Androniki-Anna Doulgeroglou , Panagiotis Kotronis , Giulio Sciarra , Catherine Bouillon","doi":"10.1016/j.finel.2024.104234","DOIUrl":"10.1016/j.finel.2024.104234","url":null,"abstract":"<div><p>A generalized finite element beam with an embedded rotation discontinuity coupled with a 3D macroelement is proposed to assess, till complete failure (no stress transfer), the vulnerability of symmetrically reinforced concrete frame structures subjected to static (monotonic, cyclic) or dynamic loading. The beam follows the Timoshenko beam theory and its sectional behavior is described in terms of generalized forces and generalized strains. The beam response up to the peak is described by a macroelement, based on plasticity theory, that adopts a 3D failure criterion expressed in terms of axial force, shear force and bending moment. The Embedded Finite Element Method is then adopted to reproduce bending dominated failure, with a global cohesive model that links the cohesive moment to a rotational jump. The formulation allows for remedy of localization phenomena and significant reduction of the necessary computational time. The performance of the proposed simplified strategy is illustrated by comparison with experimental results.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104234"},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24001288/pdfft?md5=afa88652df7026892d32407b44d7b99c&pid=1-s2.0-S0168874X24001288-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inverse beam-shell elements for full-field displacement reconstruction of stiffened panel structures","authors":"Mingyue Hu , Shaoqing Wu , Eliang Dong","doi":"10.1016/j.finel.2024.104235","DOIUrl":"10.1016/j.finel.2024.104235","url":null,"abstract":"<div><p>To obtain the displacement field of stiffened panel structures is very important for the online monitoring of aircraft or aerospace vehicles, etc. New inverse beam-shell elements are proposed in this study for the full-field displacement reconstruction of stiffened panels via strain measured by shell parts and rib parts simultaneously. The shell and rib parts in the stiffened panel are modeled by inverse shell and beam elements respectively constructed by Mindlin's plate theory and Timoshenko beam theory. To avoid the shear locking, a new inverse beam element with a virtual middle node is introduced. Constraints between the inverse shell and beam elements are given to guarantee the consistency of deformation and two typical inverse beam-shell elements are proposed. A sub-area division scheme is introduced which enables the proposed inverse elements for reconstructing the displacement field of 3D structures composed of multiple stiffened panels. Two numerical examples including a cantilever stiffened panel and a two-edge clamped 3D stiffened panel are given to demonstrate the effectiveness of the newly proposed inverse beam-shell element and the sub-area division scheme. An element-selection scheme for the arrangement of strain gauges is also proposed to reduce the measurement data used. Results show the new inverse beam-shell elements can reconstruct displacement fields accurately and the sub-area division scheme introduced guarantees the accuracy of the reconstructed displacement fields of 3D panels even when a relatively small number of strain gauges are used.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104235"},"PeriodicalIF":3.5,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long Cu Ngo , Quang-Ngoc Dinh , Han Young Yoon , Hyoung Gwon Choi
{"title":"Investigation on the effect of conductivity ratio on a conjugate heat transfer for a steady flow around a cylinder by using the hybridizable discontinuous Galerkin method","authors":"Long Cu Ngo , Quang-Ngoc Dinh , Han Young Yoon , Hyoung Gwon Choi","doi":"10.1016/j.finel.2024.104223","DOIUrl":"10.1016/j.finel.2024.104223","url":null,"abstract":"<div><p>Conjugate heat transfer (CHT) problem of flow around a fixed cylinder is examined by using a high-order method which is based on the hybridizable discontinuous Galerkin (HDG) method. The present numerical method based on HDG discretization produces a system of equations in which the energy equation of fluid is coupled with that of solid while the continuity of heat-flux at the fluid-solid interface is automatically satisfied. We Investigate the effect of the conductivity ratio on the temperature distribution inside the cylinder and more importantly, the constraint of heat-flux continuity at the fluid-solid interface. The present high-order solutions are compared with low-order solutions by finite volume method of ANSYS, especially in terms of the constraint of heat-flux continuity at the interface. We show that the present high-order method provides accurate solutions and satisfies the constraint of heat-flux continuity better than ANSYS even with the use of a coarse grid. Furthermore, we have derived a numerical correlation between the Nusselt and the Reynolds number by using the fact that the surface temperature of the cylinder is nearly constant when conductivity ratio is larger than order of hundred. The proposed numerical correlation was found to be close to that from the exiting experiment.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104223"},"PeriodicalIF":3.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A multiobjective optimization framework based on FEA, ANN, and NSGA-II to optimize the process parameters of tube-to-tubesheet joint","authors":"Shyam Kishor Sharma, B.K. Mishra, I.V. Singh","doi":"10.1016/j.finel.2024.104225","DOIUrl":"10.1016/j.finel.2024.104225","url":null,"abstract":"<div><p>This study presents a multiobjective optimization framework that integrates Artificial Neural Network (ANN) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) for the optimization of rolling process parameters of tube-to-tubesheet joint (TTT-joint). During the rolling process, both beneficial contact pressure and detrimental tensile residual stress are generated within the joint. The primary objective of this framework is to minimize the tensile residual stress while maximizing the contact pressure in the TTT-joint. To achieve this, a backpropagation ANN model is trained to rapidly estimate the residual stress and contact pressure for various sets of rolling process parameters. For training purposes, a series of nonlinear elastoplastic finite element (FE) simulations are performed to generate the input database for the neural network. A detailed parametric study is performed based on the axisymmetric FE model of the TTT-joint. The trained neural network is then incorporated into the NSGA-II optimization algorithm to find the fitness function and optimized process parameters. The contact pressure and residual stress predicted by the proposed ANN-NSGA-II framework are validated by finite element analysis (FEA) using the optimized parameters. The present analysis established that the proposed methodology can be applied in practical engineering problems to obtain the process parameters that yield the maximum contact pressure and minimum tensile residual stress in the TTT-joint.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"241 ","pages":"Article 104225"},"PeriodicalIF":3.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingfeng Guo , Xiaolong Li , Danqing Song , Junsheng Chen , Xiaoli Liu , Yongjian Liu
{"title":"Cosserat constitutive theory and one of its higher-order forms: A rediscussion on the mesh dependence problem","authors":"Lingfeng Guo , Xiaolong Li , Danqing Song , Junsheng Chen , Xiaoli Liu , Yongjian Liu","doi":"10.1016/j.finel.2024.104224","DOIUrl":"10.1016/j.finel.2024.104224","url":null,"abstract":"<div><p>When the finite element method (FEM) is adopted for studying strain localization problems, the mesh dependence phenomenon often ensues. The occurrence of mesh dependency will reduce the reliability of FEM simulations, so it is still worth studying. Herein, a constitutive model with decent mesh stability named the multiscale Cosserat (MC) model which contains higher-order rotation variables based on the conventional Cosserat (CC) theory, was introduced. The theory derivation indicates that the MC model has an extra internal length scale vector <em>D</em><sub><em>q</em></sub> that can consider the microscopic geometrical characteristics of the simulated material and can easily regress to the conventional Cosserat model when <em>D</em><sub><em>q</em></sub> = 0. After revisiting the mesh dependence problem through numerical simulations of plane strain compression tests, the mechanisms and advantages of the CC and MC models in solving the mesh dependence problem were discussed. The analysis demonstrated that the CC theory can alleviate the mesh dependence problem but cannot eliminate it; when the divergence of the computation occurs, due to a stricter accuracy requirement for convergence, the computation result of the MC model tends to stabilize along with the refinement of the elements. The mesh advantage of the MC model is influenced by both the length scales <em>l</em> and <em>D</em><sub><em>q</em></sub>. This study can provide new insight into understanding the mesh dependence problem, and the MC model introduced here is a potential model for comprehensively eliminating the influence of mesh dependence problems.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"241 ","pages":"Article 104224"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammadamin Esmaeilzadehazimi, Aouni A. Lakis, Mohammad Toorani
{"title":"Finite element model to investigate the dynamic instability of ring stiffened conical shells subjected to flowing fluid","authors":"Mohammadamin Esmaeilzadehazimi, Aouni A. Lakis, Mohammad Toorani","doi":"10.1016/j.finel.2024.104221","DOIUrl":"10.1016/j.finel.2024.104221","url":null,"abstract":"<div><p>In this study, the vibration stability (i.e., static divergence) and critical velocity of fluid-conveying, ring-stiffened, truncated conical shells are investigated under various boundary conditions. The shell is characterized using Sanders’ theory, while the fluid is modeled using a velocity potential approach with the impermeability condition at the fluid-shell interface. Using linear superposition, the natural frequencies corresponding to each flow velocity are determined by satisfying the dynamic characteristic equation and boundary conditions. Critical velocities are identified where the natural frequencies vanish, indicating static divergence. Parametric studies are conducted to investigate the effect of ring stiffeners on the critical velocities with respect to the semi-cone angle, number of rings, and boundary conditions. The proposed model is validated through comparison with published data. It is found that the rings significantly affect the stability of the cone under different boundary conditions. Instability in stiffened shells occurs at higher critical fluid velocities than in unstiffened shells across all boundary conditions. An increase in the vertex angle leads to a decrease in critical flow discharge.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"241 ","pages":"Article 104221"},"PeriodicalIF":3.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X2400115X/pdfft?md5=4f123bc95eb6b6e128c0c3d47b4df26f&pid=1-s2.0-S0168874X2400115X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Trainotti, Jure Marinko, Johannes Maierhofer, Daniel J. Rixen
{"title":"ECSW hyperreduction of hyper-viscoelastic components via co-simulation with Abaqus","authors":"Francesco Trainotti, Jure Marinko, Johannes Maierhofer, Daniel J. Rixen","doi":"10.1016/j.finel.2024.104222","DOIUrl":"10.1016/j.finel.2024.104222","url":null,"abstract":"<div><p>Rubber components are widely spread in engineering due to their mechanical properties such as high strength, elongation, and dissipation characteristics. Modeling rubber behavior poses challenges because of its complex visco-elastic properties and various nonlinear effects. As high fidelity simulations become increasingly challenging, reduction techniques such as subspace projection and hyper-reduction have emerged, which seek to achieve efficient use of complex models while reducing computational demands.</p><p>This article presents a Python-Abaqus co-simulation framework to perform the Energy Conserving Sampling and Weighting (ECSW) hyperreduction on nonlinear finite element hyper-viscoelastic models. A novel approach based on incremental elementary work is formulated to optimize the element selection in ECSW in the attempt of exploiting the rate dependent material characteristics. The successful implementation of the co-simulation framework underscores the beneficial use of commercial code capabilities in the development of nonlinear reduction algorithms. A numerical cantilever beam subjected to dynamic loading is employed to explore the potential of the newly proposed ECSW variant.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"241 ","pages":"Article 104222"},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24001161/pdfft?md5=dc48d6cf03e78265ffd4d6fe20c98476&pid=1-s2.0-S0168874X24001161-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feihong Liu , Andrea P. Argüelles , Christian Peco
{"title":"Numerical dispersion and dissipation in 3D wave propagation for polycrystalline homogenization","authors":"Feihong Liu , Andrea P. Argüelles , Christian Peco","doi":"10.1016/j.finel.2024.104212","DOIUrl":"10.1016/j.finel.2024.104212","url":null,"abstract":"<div><p>The engineering design of metamaterials with selected acoustic properties necessitates adequate prediction of the elastic wave propagation across various domains and specific frequency ranges. This study proposes a systematic approach centered on the finite element characterization of the three-dimensional Green’s function for a representative volume element. The inherent characteristics of broadband waves and singular impulses contribute to notable challenges related to accuracy and high-frequency oscillations, and thus the emphasis is set on providing an exhaustive analysis for this numerical characterization scheme. The study focuses on the broadband wave dispersion and requisite considerations for numerical damping, and evaluates the impact of dissipation and space–time discretization schemes for optimal performance. In contrast to conventional methods that employ a plane wave, the proposed approach does not need extra assumptions on the enforcement of boundary conditions and can effectively consider the influences of length scale from the material configurations. A quasi-equiaxed polycrystalline ice microstructure is utilized as an application example for homogenizing heterogeneous materials, in line with advancements in cryo-ultrasonic testing techniques.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"240 ","pages":"Article 104212"},"PeriodicalIF":3.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ballistic resistance of biomimetic ceramic composite armor: An integrated analysis of impact dynamics and structural response","authors":"Ming-hui Ma, Yi-ding Wu, Yi-lei Yu, Wen-cheng Lu, Guang-fa Gao","doi":"10.1016/j.finel.2024.104209","DOIUrl":"10.1016/j.finel.2024.104209","url":null,"abstract":"<div><p>This study introduces a biomimetic ceramic composite armor system, composed of multilayered biomimetic ceramic tiles and fiber back-plates. The ballistic performance of the composite armor against T12A steel projectiles was investigated through experimental and numerical simulation studies. The experimental findings indicate that, while the biomimetic ceramic structure demonstrates weaker ballistic resistance compared to a monolithic ceramic of equal thickness, it effectively inhibits crack propagation, thereby enabling it to withstand the impact of multiple projectiles. Additionally, the interfacial effects within the layers of the biomimetic ceramic structure create a more chaotic stress field inside the T12A steel projectile, resulting in a higher degree of fragmentation of the projectile compared to penetration through monolithic ceramic. A three-dimensional numerical model was established to analyze the impact of projectile velocity and impact points on the ballistic performance of the biomimetic ceramic composite structure. Simulation results reveal that as the initial velocity of the projectile increases, the energy absorption efficiency of the biomimetic ceramic structure improves, whereas the energy absorption efficiency of the UHMWPE laminated board decreases. This phenomenon is associated with the failure mechanism of the UHMWPE laminated board transitioning from tensile failure to shear failure. Moreover, when the impact point is at the corner of the ceramic tile, the residual projectile head is sharper, and the remaining velocity of the projectile after penetrating the biomimetic ceramic composite structure is higher.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"240 ","pages":"Article 104209"},"PeriodicalIF":3.5,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}