{"title":"Ballistic resistance of biomimetic ceramic composite armor: An integrated analysis of impact dynamics and structural response","authors":"Ming-hui Ma, Yi-ding Wu, Yi-lei Yu, Wen-cheng Lu, Guang-fa Gao","doi":"10.1016/j.finel.2024.104209","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a biomimetic ceramic composite armor system, composed of multilayered biomimetic ceramic tiles and fiber back-plates. The ballistic performance of the composite armor against T12A steel projectiles was investigated through experimental and numerical simulation studies. The experimental findings indicate that, while the biomimetic ceramic structure demonstrates weaker ballistic resistance compared to a monolithic ceramic of equal thickness, it effectively inhibits crack propagation, thereby enabling it to withstand the impact of multiple projectiles. Additionally, the interfacial effects within the layers of the biomimetic ceramic structure create a more chaotic stress field inside the T12A steel projectile, resulting in a higher degree of fragmentation of the projectile compared to penetration through monolithic ceramic. A three-dimensional numerical model was established to analyze the impact of projectile velocity and impact points on the ballistic performance of the biomimetic ceramic composite structure. Simulation results reveal that as the initial velocity of the projectile increases, the energy absorption efficiency of the biomimetic ceramic structure improves, whereas the energy absorption efficiency of the UHMWPE laminated board decreases. This phenomenon is associated with the failure mechanism of the UHMWPE laminated board transitioning from tensile failure to shear failure. Moreover, when the impact point is at the corner of the ceramic tile, the residual projectile head is sharper, and the remaining velocity of the projectile after penetrating the biomimetic ceramic composite structure is higher.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"240 ","pages":"Article 104209"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a biomimetic ceramic composite armor system, composed of multilayered biomimetic ceramic tiles and fiber back-plates. The ballistic performance of the composite armor against T12A steel projectiles was investigated through experimental and numerical simulation studies. The experimental findings indicate that, while the biomimetic ceramic structure demonstrates weaker ballistic resistance compared to a monolithic ceramic of equal thickness, it effectively inhibits crack propagation, thereby enabling it to withstand the impact of multiple projectiles. Additionally, the interfacial effects within the layers of the biomimetic ceramic structure create a more chaotic stress field inside the T12A steel projectile, resulting in a higher degree of fragmentation of the projectile compared to penetration through monolithic ceramic. A three-dimensional numerical model was established to analyze the impact of projectile velocity and impact points on the ballistic performance of the biomimetic ceramic composite structure. Simulation results reveal that as the initial velocity of the projectile increases, the energy absorption efficiency of the biomimetic ceramic structure improves, whereas the energy absorption efficiency of the UHMWPE laminated board decreases. This phenomenon is associated with the failure mechanism of the UHMWPE laminated board transitioning from tensile failure to shear failure. Moreover, when the impact point is at the corner of the ceramic tile, the residual projectile head is sharper, and the remaining velocity of the projectile after penetrating the biomimetic ceramic composite structure is higher.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.