Mark J. Chen , Kavinayan Sivakumar , Gregory A. Banyay , Brian M. Golchert , Timothy F. Walsh , Michael M. Zavlanos , Wilkins Aquino
{"title":"Sequential sensor placement for damage detection under frequency-domain dynamics","authors":"Mark J. Chen , Kavinayan Sivakumar , Gregory A. Banyay , Brian M. Golchert , Timothy F. Walsh , Michael M. Zavlanos , Wilkins Aquino","doi":"10.1016/j.finel.2025.104315","DOIUrl":"10.1016/j.finel.2025.104315","url":null,"abstract":"<div><div>Identification and monitoring of damage have a growing importance in the maintenance of structures. A robust active sensing framework that integrates model-based inference and optimal sensor placement is proposed. By tightly coupling measured data and data acquisition scenarios, a <em>simultaneous</em> approach of damage estimation and sensor placement can be used to continuously and accurately assess a structure. In this work, a partial differential equation-constrained formulation for damage estimation is first developed using a conventional model-updating approach with a penalization damage parameter. Then, this formulation is linearized around the damage estimator to produce an Optimal Experimental Design (OED) problem for desirable sensor locations. Hence, the simultaneous sensing framework is postulated using a Fisher Information Matrix (FIM)-based approach as follows: given a current candidate damage state associated with the most up-to-date sensor information, find the next sensor location that minimizes some metric of the FIM and update the damage estimator. The sensing framework is also enhanced by introducing a Modified Error in Constitutive Equations (MECE) functional in the damage estimator. Adding MECE makes the framework more robust by limiting the damage estimator from being trapped in local minima. Through numerical examples, we show that our approach produces accurate damage estimators using a small number of sensor locations. In addition, we compare our results to those obtained using random sensor selections and expertly selected locations.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"246 ","pages":"Article 104315"},"PeriodicalIF":3.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stress-related topology optimization based on Isogeometric Analysis and global stress measures","authors":"Yupeng Huang, Song Yao, Xing Chen","doi":"10.1016/j.finel.2025.104317","DOIUrl":"10.1016/j.finel.2025.104317","url":null,"abstract":"<div><div>This paper presents a robust isogeometric topology optimization (ITO) framework that integrates Isogeometric Analysis (IGA) with global stress measures to enhance both accuracy and stability in stress-related structural optimization. Non-Uniform Rational B-Splines (NURBS)-based IGA is employed to ensure higher-order continuity and refined topology representation, enabling precise stress evaluation. The p-norm stress aggregation approximates maximum stress, while incorporating average stress into ITO mitigates oscillations for large p-norm parameters and further reduces sensitivity to <span><math><mi>P</mi></math></span>. Notably, this approach eliminates stress concentrations even when <span><math><mrow><mi>P</mi><mo>=</mo><mn>3</mn></mrow></math></span>, and maintains stable convergence as <span><math><mi>P</mi></math></span> increases up to 40 or more, thereby extending the feasible range of <span><math><mi>P</mi></math></span>-values. By examining various weight combinations of p-norm and average stress, we reveal how controlling both amplitude and mean stress leads to more uniform and lower stress levels. Additionally, an adaptive continuous scheme for stress constraints further improves convergence stability by gradually tightening stress limits from a relaxed state to the target value. Numerical results confirm that the proposed method consistently delivers accurate, stable, and efficient solutions for stress-related isogeometric topology optimization, marking a significant advancement in the field.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"245 ","pages":"Article 104317"},"PeriodicalIF":3.5,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143125222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Murtadha J. Al-Chlaihawi , Dariel Desena-Galarza , Heiko Topol , José Merodio
{"title":"Computational modeling of a residually stressed thick-walled cylinder under the combined action of axial extension and inflation","authors":"Murtadha J. Al-Chlaihawi , Dariel Desena-Galarza , Heiko Topol , José Merodio","doi":"10.1016/j.finel.2024.104309","DOIUrl":"10.1016/j.finel.2024.104309","url":null,"abstract":"<div><div>Previous studies have shown that the mechanical response of incompressible hyperelastic materials is affected by the occurrence of residual stresses. In the context of biological soft tissues, such residual stresses result from factors that include growth and development processes. The detailed effect of these initial stresses on mechanical behavior remains to be explored in detail. The magnitude and distribution of residual stresses in arterial wall tissue affect the location of the occurrence of instabilities such as bulges. This study aims to develop a new approach to assess material behavior during bifurcation instability in the presence of residual stresses, especially non-planar stresses. A finite element protocol is developed for bifurcation and post-bifurcation of residually stressed thick-walled hyper-elastic circular hollow tubes subjected to axial stretches and internal pressure, incorporating three-dimensional residual stresses. A constitutive equation based on the strain energy function for these tubes is formulated and implemented in ABAQUS, using the Modified Riks method and a user-defined material subroutine (UMAT). Results indicate that bending bifurcation is likely for small axial stretches but becomes less probable with larger axial stretches while bulging bifurcation is expected for all axial stretch values. Pressures associated with pure bulging modes are higher than those for bulging induced by bending, suggesting aneurysms can be delayed by avoiding bending bifurcation. The bulging from bending bifurcation occurs on one side of the tubes, reflecting abdominal aortic aneurysm (AAA) conditions. The unsymmetrical bulge development aligns with the methodology used, whereas balloon-like bulging in pure modes is linked to arterial rupture.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104309"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Bertani , A. Bilotta , A.M. D’Altri , S. de Miranda , F.S. Liguori , A. Madeo
{"title":"A hybrid stress finite element for the efficient nonlinear analysis of masonry walls based on a multi-failure strength domain","authors":"G. Bertani , A. Bilotta , A.M. D’Altri , S. de Miranda , F.S. Liguori , A. Madeo","doi":"10.1016/j.finel.2024.104310","DOIUrl":"10.1016/j.finel.2024.104310","url":null,"abstract":"<div><div>A novel 8-node hybrid stress finite element (FE) is proposed for the efficient nonlinear analysis of in-plane loaded masonry walls. To provide a robust, easy-to-characterize mechanically, and computationally efficient practice-oriented numerical framework, masonry is idealized as an elasto-plastic homogeneous continuum. Elasto-plasticity is considered at the FE level by means of a dual-decomposition approach, with plasticity controlled at Gauss–Lobatto points. A state-of-the-art single-surface multi-failure anisotropic strength domain specifically dedicated to masonry is employed. Multiple limit surfaces are considered and condensed into a unique surface through the RealSoftMax function, preserving the distinction between failure modes and the level of activation of each failure thanks to specific weights. The present numerical framework is tested though several structurally meaningful examples with available numerical and experimental reference solutions, comparing the efficiency of the proposed FE with standard displacement-based FEs, as well as other mixed FEs. As a result, the novel 8-node hybrid stress FE shows superior performance with respect to the other FEs, in terms of accuracy and convergence rate. Accordingly, the present numerical framework allows to simulate accurately the nonlinear response of masonry walls and to track realistically the evolution of the considered failure modes even with a few FEs per wall, so being particularly efficient and appealing in engineering common practice.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104310"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierre-Eliot Malleval , Ronan Scanff , David Néron
{"title":"Advancing industrial finite element software: Developing Model Order Reduction for nonlinear transient thermal problems","authors":"Pierre-Eliot Malleval , Ronan Scanff , David Néron","doi":"10.1016/j.finel.2024.104299","DOIUrl":"10.1016/j.finel.2024.104299","url":null,"abstract":"<div><div>Over the past two decades, non-intrusive techniques have been used to develop reduced-order models for nonlinear structures in industrial environments. These techniques have placed a significant emphasis on <em>a posteriori</em> methods, which often rely on solutions derived from computationally expensive full-order models. Using <em>a priori</em> methods not relying on the full order model might be preferred as they reduce the computational burden upfront. The intrusiveness of the algorithms associated with these methods limits their introduction into commercial finite element software. Integrating robust and reliable approaches into a certified product is necessary for these methods to spread at an industrial level. This work aligns with this ambition, extending a weakly-intrusive implementation of the LATIN-PGD already embedded into commercial finite element software to transient thermal problems. The novelty of the approach stems from its extensive applicability, enabling the PGD method to address not just specific applications but also to seamlessly handle any nonlinearities, diverse element types, various boundary conditions, and other features inherent in such software. This results in a new comprehensive industrial nonlinear solver, including <em>a priori</em> model order reduction.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104299"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plate finite elements with arbitrary displacement fields along the thickness","authors":"E. Carrera , D. Scano , E. Zappino","doi":"10.1016/j.finel.2024.104296","DOIUrl":"10.1016/j.finel.2024.104296","url":null,"abstract":"<div><div>The present paper introduces a methodology for formulating two-dimensional structural theories featuring arbitrary kinematic fields. In the proposed approach, each displacement variable can be examined through an independent expansion function, enabling the integration of both classical and higher-order theories within a unified framework. The Carrera Unified Formulation is used to derive the governing equations in a unified form, independent of the expansion adopted for each displacement component. In this paper, plate structural theories are constructed by using polynomial expansions. The finite element method is used to discretize the structure in the reference plane of the plate, utilizing Lagrange-based elements. The Mixed Interpolation of Tensorial Components is adopted to alleviate the shear locking issues. In this study, isotropic plate structures are investigated under various loadings, boundary conditions, and different length-to-thickness ratios. Whenever possible, the present results are compared with analytical and literature solutions. The accuracy of the presented models is evaluated for both displacements and stress components. The findings indicate that the selection of the most appropriate model is strongly dependent on the specific parameters of the individual problem, however, choosing the right model can significantly enhance the efficiency of the numerical analysis.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104296"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xueya Wang , Yiming Zhang , Minjie Wen , Herbert A. Mang
{"title":"A simple hybrid linear and nonlinear interpolation finite element for the adaptive Cracking Elements Method","authors":"Xueya Wang , Yiming Zhang , Minjie Wen , Herbert A. Mang","doi":"10.1016/j.finel.2024.104295","DOIUrl":"10.1016/j.finel.2024.104295","url":null,"abstract":"<div><div>The Cracking Elements Method (CEM) is a numerical tool for simulation of quasi-brittle fracture. It neither needs remeshing, nor nodal enrichment, or a complicated crack-tracking strategy. The cracking elements used in the CEM can be considered as a special type of Galerkin finite elements. A disadvantage of the CEM is that it uses nonlinear interpolation of the displacement field (e.g. Q8 and T6 elements for 2D problems), introducing more nodes and consequently requiring greater computing efforts than in case of elements based on linear interpolation of the displacement field. With the aim to solve this problem we propose a hybrid linear and nonlinear interpolation finite element for the adaptive CEM presented in this work. A simple strategy is proposed for treating elements with <span><math><mi>p</mi></math></span> edge nodes, where <span><math><mrow><mi>p</mi><mo>∈</mo><mfenced><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></mfenced></mrow></math></span>, with <span><math><mi>n</mi></math></span> as the edge number of the considered element. Only a few program codes are needed. Then, by just adding edge and center nodes to the elements experiencing cracking, while keeping linear interpolation of the displacement field for the elements outside the cracking domain, the number of total nodes is reduced to almost one half of the number in case of using the conventional CEM. Numerical investigations have shown that the new approach not only preserves all of the advantages of the CEM, but also results in a significantly enhanced computing efficiency.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104295"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of C1 smooth isogeometric functions for planar multi-patch domains for NURBS based analysis","authors":"Lokanath Barik, Abinash Kumar Swain","doi":"10.1016/j.finel.2024.104300","DOIUrl":"10.1016/j.finel.2024.104300","url":null,"abstract":"<div><div>This paper proposes a novel framework for constructing <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> smooth isogeometric functions on the planar multipatch domain. We extend the concept of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> coupling, wherein the null space approach was used to construct geometrically continuous basis functions as linear combinations of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> basis functions near patch junctions. However, due to the lack of continuity constraints, the resulting approximate basis functions violated the partition of unity and non-negativity properties. The proposed framework enforces the partition of unity and non-negativity conditions through additional equations, preserving higher-order continuity across the interface. The patch coupling algorithm provided generates <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> smooth isogeometric functions for arbitrarily shaped planar multipatch geometries. The advantage of this proposed approach is a reduced degree of approximation and a smooth transition from 1D to 2D patch coupling methodology. The computational effort to determine a new set of basis functions is significantly reduced due to the partition of unity property. Numerical studies are performed for the Kirchhoff–Love plate and biharmonic equations on various curved multipatch geometries, including an additional patch test. Enhanced numerical accuracy is observed for geometries with curved interfaces and boundaries. The accuracy and numerical efficiency of the proposed framework are analysed through <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> errors, showing optimal convergence behaviour for different polynomial orders. Furthermore, well-conditioned global matrices are observed with increasing refinement levels, demonstrating the efficiency of the methodology.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104300"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An hp-finite element for vibration analysis of laminates reinforced with curvilinear fibres","authors":"Pedro Camacho, Pedro Ribeiro, Hamed Akhavan","doi":"10.1016/j.finel.2024.104280","DOIUrl":"10.1016/j.finel.2024.104280","url":null,"abstract":"<div><div>In this paper, an approach to model thin composite plates reinforced with curvilinear fibres is presented and applied to analyse modes of vibration. Particular attention is given to plates with non-standard geometries, which are less commonly addressed in studies on this topic. Aiming to achieve accuracy with a small number of degrees-of-freedom, the model is based on Kirchhoff’s plate theory, combined with an <em>hp</em>-version finite element method. Assembling <em>p</em>-version Kirchhoff plate elements, while ensuring continuity, presents a significant challenge. Elastic connections are introduced to address this issue. Additionally, elastic boundaries are also considered to impose the boundary conditions. Regarding the reinforcing fibres, cubic polynomial splines are employed to represent the path of the fibres, which also adds to the proposed model generality. To discretise the displacement field of the plate, three sets of interpolation functions are investigated. The convergence properties of the model, and the effects of the intervening features, are analysed based on <em>hp</em>-refinement. The proposed approach is shown to require fewer degrees-of-freedom to effectively analyse irregular-shaped plates, when compared to the more commonly used <em>h</em>-version finite elements. Moreover, the capability of cubic polynomial splines to represent fibre paths is validated. The paper concludes with modal analysis of a composite plate with a complex shape to verify tailoring abilities of reinforcing curvilinear fibres.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104280"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An innovative beam element with section components cohesive interaction for reinforced concrete frames","authors":"S.Hamed Ebrahimi","doi":"10.1016/j.finel.2024.104307","DOIUrl":"10.1016/j.finel.2024.104307","url":null,"abstract":"<div><div>The behavior of a Timoshenko concrete beam reinforced by ribbed steel rebars is a function of the cohesive interaction between the concrete and reinforcement provided via bond-slip or traction-separation law. Bond-slip interactions between top/bottom reinforcements and the concrete beam section considering the shear deformations have been studied in this paper in static loading and nonlinear material and geometry conditions.</div><div>In this regard, the hybrid beam element has been enriched with two additional interactive degrees of freedom which incorporate the constituted freedom of the top and bottom unions of compressive and tensile reinforcements.</div><div>For this purpose, a two-dimensional mesh of the section is added as considered in the multi-fiber and multiscale approaches to non-homogeneous materials simulation whereas, several benefits are provided among which are non-prismatic reinforced concrete beam analysis, arbitrary composite beam section architecture, processing damage, and tracking cracks through the beam section and accordingly through the length of the beam, Fiber Reinforced Polymer reinforcement and wrapping laminates analysis and design, considering prestressing beam sections and many other advantages.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104307"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}