饱和孔弹性动力学的模块化有限元方法:流固耦合与 Neo-Hookean 材料和不可压缩流

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
{"title":"饱和孔弹性动力学的模块化有限元方法:流固耦合与 Neo-Hookean 材料和不可压缩流","authors":"","doi":"10.1016/j.finel.2024.104256","DOIUrl":null,"url":null,"abstract":"<div><p>Several methods have been developed to model the dynamic behavior of saturated porous media. However, most of them are suitable only for small strain and small displacement problems and are built in a monolithic way, so that individual improvements in the solution of the solid or fluid phases can be difficult. This study shows a macroscopic approach through a partitioned fluid–solid coupling, in which the skeleton solid is considered to behave as a Neo-Hookean material and the interstitial flow is incompressible following the Stokes–Brinkman model. The porous solid is numerically modeled with a total Lagrangian position-based finite element formulation, while an Arbitrary Lagrangian-Eulerian stabilized finite element approach is employed for the porous medium flow dynamics. In both fields, an averaging procedure is applied to homogenize the problem, resulting in a macroscopic continuous phase. The solid and fluid homogenized domains are overlapped and strongly coupled, based on a block-iterative solution scheme. Two-dimensional simulations of wave propagation in saturated porous media are employed to validate the proposed formulation through a comprehensive comparison with analytical and numerical results from the literature. The analyses underscore the proposed formulation as a robust and precise modular approach for addressing dynamic problems in poroelasticity.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modular finite element approach to saturated poroelasticity dynamics: Fluid–solid coupling with Neo-Hookean material and incompressible flow\",\"authors\":\"\",\"doi\":\"10.1016/j.finel.2024.104256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several methods have been developed to model the dynamic behavior of saturated porous media. However, most of them are suitable only for small strain and small displacement problems and are built in a monolithic way, so that individual improvements in the solution of the solid or fluid phases can be difficult. This study shows a macroscopic approach through a partitioned fluid–solid coupling, in which the skeleton solid is considered to behave as a Neo-Hookean material and the interstitial flow is incompressible following the Stokes–Brinkman model. The porous solid is numerically modeled with a total Lagrangian position-based finite element formulation, while an Arbitrary Lagrangian-Eulerian stabilized finite element approach is employed for the porous medium flow dynamics. In both fields, an averaging procedure is applied to homogenize the problem, resulting in a macroscopic continuous phase. The solid and fluid homogenized domains are overlapped and strongly coupled, based on a block-iterative solution scheme. Two-dimensional simulations of wave propagation in saturated porous media are employed to validate the proposed formulation through a comprehensive comparison with analytical and numerical results from the literature. The analyses underscore the proposed formulation as a robust and precise modular approach for addressing dynamic problems in poroelasticity.</p></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24001501\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001501","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

目前已开发出多种方法来模拟饱和多孔介质的动态行为。然而,这些方法大多只适用于小应变和小位移问题,而且是以整体方式构建的,因此很难对固相或流体相的求解进行单独改进。本研究展示了一种通过分区流固耦合的宏观方法,其中骨架固体的行为被视为新胡克材料,而间隙流是不可压缩的,遵循斯托克斯-布林克曼模型。多孔固体采用基于位置的全拉格朗日有限元方法进行数值建模,而多孔介质流动动力学则采用任意拉格朗日-欧拉稳定有限元方法。在这两个领域中,都采用了平均化程序对问题进行均匀化处理,从而形成宏观连续相。基于分块迭代求解方案,固体和流体均质化域被重叠并强耦合。采用饱和多孔介质中波传播的二维模拟,通过与文献中的分析和数值结果进行综合比较,验证了所提出的公式。分析结果表明,所提出的公式是解决孔弹性动态问题的一种稳健而精确的模块化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modular finite element approach to saturated poroelasticity dynamics: Fluid–solid coupling with Neo-Hookean material and incompressible flow

Several methods have been developed to model the dynamic behavior of saturated porous media. However, most of them are suitable only for small strain and small displacement problems and are built in a monolithic way, so that individual improvements in the solution of the solid or fluid phases can be difficult. This study shows a macroscopic approach through a partitioned fluid–solid coupling, in which the skeleton solid is considered to behave as a Neo-Hookean material and the interstitial flow is incompressible following the Stokes–Brinkman model. The porous solid is numerically modeled with a total Lagrangian position-based finite element formulation, while an Arbitrary Lagrangian-Eulerian stabilized finite element approach is employed for the porous medium flow dynamics. In both fields, an averaging procedure is applied to homogenize the problem, resulting in a macroscopic continuous phase. The solid and fluid homogenized domains are overlapped and strongly coupled, based on a block-iterative solution scheme. Two-dimensional simulations of wave propagation in saturated porous media are employed to validate the proposed formulation through a comprehensive comparison with analytical and numerical results from the literature. The analyses underscore the proposed formulation as a robust and precise modular approach for addressing dynamic problems in poroelasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信