{"title":"饱和孔弹性动力学的模块化有限元方法:流固耦合与 Neo-Hookean 材料和不可压缩流","authors":"","doi":"10.1016/j.finel.2024.104256","DOIUrl":null,"url":null,"abstract":"<div><p>Several methods have been developed to model the dynamic behavior of saturated porous media. However, most of them are suitable only for small strain and small displacement problems and are built in a monolithic way, so that individual improvements in the solution of the solid or fluid phases can be difficult. This study shows a macroscopic approach through a partitioned fluid–solid coupling, in which the skeleton solid is considered to behave as a Neo-Hookean material and the interstitial flow is incompressible following the Stokes–Brinkman model. The porous solid is numerically modeled with a total Lagrangian position-based finite element formulation, while an Arbitrary Lagrangian-Eulerian stabilized finite element approach is employed for the porous medium flow dynamics. In both fields, an averaging procedure is applied to homogenize the problem, resulting in a macroscopic continuous phase. The solid and fluid homogenized domains are overlapped and strongly coupled, based on a block-iterative solution scheme. Two-dimensional simulations of wave propagation in saturated porous media are employed to validate the proposed formulation through a comprehensive comparison with analytical and numerical results from the literature. The analyses underscore the proposed formulation as a robust and precise modular approach for addressing dynamic problems in poroelasticity.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modular finite element approach to saturated poroelasticity dynamics: Fluid–solid coupling with Neo-Hookean material and incompressible flow\",\"authors\":\"\",\"doi\":\"10.1016/j.finel.2024.104256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several methods have been developed to model the dynamic behavior of saturated porous media. However, most of them are suitable only for small strain and small displacement problems and are built in a monolithic way, so that individual improvements in the solution of the solid or fluid phases can be difficult. This study shows a macroscopic approach through a partitioned fluid–solid coupling, in which the skeleton solid is considered to behave as a Neo-Hookean material and the interstitial flow is incompressible following the Stokes–Brinkman model. The porous solid is numerically modeled with a total Lagrangian position-based finite element formulation, while an Arbitrary Lagrangian-Eulerian stabilized finite element approach is employed for the porous medium flow dynamics. In both fields, an averaging procedure is applied to homogenize the problem, resulting in a macroscopic continuous phase. The solid and fluid homogenized domains are overlapped and strongly coupled, based on a block-iterative solution scheme. Two-dimensional simulations of wave propagation in saturated porous media are employed to validate the proposed formulation through a comprehensive comparison with analytical and numerical results from the literature. The analyses underscore the proposed formulation as a robust and precise modular approach for addressing dynamic problems in poroelasticity.</p></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24001501\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001501","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A modular finite element approach to saturated poroelasticity dynamics: Fluid–solid coupling with Neo-Hookean material and incompressible flow
Several methods have been developed to model the dynamic behavior of saturated porous media. However, most of them are suitable only for small strain and small displacement problems and are built in a monolithic way, so that individual improvements in the solution of the solid or fluid phases can be difficult. This study shows a macroscopic approach through a partitioned fluid–solid coupling, in which the skeleton solid is considered to behave as a Neo-Hookean material and the interstitial flow is incompressible following the Stokes–Brinkman model. The porous solid is numerically modeled with a total Lagrangian position-based finite element formulation, while an Arbitrary Lagrangian-Eulerian stabilized finite element approach is employed for the porous medium flow dynamics. In both fields, an averaging procedure is applied to homogenize the problem, resulting in a macroscopic continuous phase. The solid and fluid homogenized domains are overlapped and strongly coupled, based on a block-iterative solution scheme. Two-dimensional simulations of wave propagation in saturated porous media are employed to validate the proposed formulation through a comprehensive comparison with analytical and numerical results from the literature. The analyses underscore the proposed formulation as a robust and precise modular approach for addressing dynamic problems in poroelasticity.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.