{"title":"通过与 Abaqus 的协同模拟对超弹性组件进行 ECSW 超还原","authors":"","doi":"10.1016/j.finel.2024.104222","DOIUrl":null,"url":null,"abstract":"<div><p>Rubber components are widely spread in engineering due to their mechanical properties such as high strength, elongation, and dissipation characteristics. Modeling rubber behavior poses challenges because of its complex visco-elastic properties and various nonlinear effects. As high fidelity simulations become increasingly challenging, reduction techniques such as subspace projection and hyper-reduction have emerged, which seek to achieve efficient use of complex models while reducing computational demands.</p><p>This article presents a Python-Abaqus co-simulation framework to perform the Energy Conserving Sampling and Weighting (ECSW) hyperreduction on nonlinear finite element hyper-viscoelastic models. A novel approach based on incremental elementary work is formulated to optimize the element selection in ECSW in the attempt of exploiting the rate dependent material characteristics. The successful implementation of the co-simulation framework underscores the beneficial use of commercial code capabilities in the development of nonlinear reduction algorithms. A numerical cantilever beam subjected to dynamic loading is employed to explore the potential of the newly proposed ECSW variant.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24001161/pdfft?md5=dc48d6cf03e78265ffd4d6fe20c98476&pid=1-s2.0-S0168874X24001161-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ECSW hyperreduction of hyper-viscoelastic components via co-simulation with Abaqus\",\"authors\":\"\",\"doi\":\"10.1016/j.finel.2024.104222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rubber components are widely spread in engineering due to their mechanical properties such as high strength, elongation, and dissipation characteristics. Modeling rubber behavior poses challenges because of its complex visco-elastic properties and various nonlinear effects. As high fidelity simulations become increasingly challenging, reduction techniques such as subspace projection and hyper-reduction have emerged, which seek to achieve efficient use of complex models while reducing computational demands.</p><p>This article presents a Python-Abaqus co-simulation framework to perform the Energy Conserving Sampling and Weighting (ECSW) hyperreduction on nonlinear finite element hyper-viscoelastic models. A novel approach based on incremental elementary work is formulated to optimize the element selection in ECSW in the attempt of exploiting the rate dependent material characteristics. The successful implementation of the co-simulation framework underscores the beneficial use of commercial code capabilities in the development of nonlinear reduction algorithms. A numerical cantilever beam subjected to dynamic loading is employed to explore the potential of the newly proposed ECSW variant.</p></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24001161/pdfft?md5=dc48d6cf03e78265ffd4d6fe20c98476&pid=1-s2.0-S0168874X24001161-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24001161\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001161","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
ECSW hyperreduction of hyper-viscoelastic components via co-simulation with Abaqus
Rubber components are widely spread in engineering due to their mechanical properties such as high strength, elongation, and dissipation characteristics. Modeling rubber behavior poses challenges because of its complex visco-elastic properties and various nonlinear effects. As high fidelity simulations become increasingly challenging, reduction techniques such as subspace projection and hyper-reduction have emerged, which seek to achieve efficient use of complex models while reducing computational demands.
This article presents a Python-Abaqus co-simulation framework to perform the Energy Conserving Sampling and Weighting (ECSW) hyperreduction on nonlinear finite element hyper-viscoelastic models. A novel approach based on incremental elementary work is formulated to optimize the element selection in ECSW in the attempt of exploiting the rate dependent material characteristics. The successful implementation of the co-simulation framework underscores the beneficial use of commercial code capabilities in the development of nonlinear reduction algorithms. A numerical cantilever beam subjected to dynamic loading is employed to explore the potential of the newly proposed ECSW variant.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.