Finite Elements in Analysis and Design最新文献

筛选
英文 中文
Investigation of nonlinear buckling of FGM shells using a high-order finite continuation approach 利用高阶有限延续方法研究 FGM 壳体的非线性屈曲
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-11-06 DOI: 10.1016/j.finel.2024.104273
Oussama Elmhaia , Omar Askour , Yassir Sitli , Said Mesmoudi , Mohammed Rammane , Oussama Bourihane , Youssef Hilali
{"title":"Investigation of nonlinear buckling of FGM shells using a high-order finite continuation approach","authors":"Oussama Elmhaia ,&nbsp;Omar Askour ,&nbsp;Yassir Sitli ,&nbsp;Said Mesmoudi ,&nbsp;Mohammed Rammane ,&nbsp;Oussama Bourihane ,&nbsp;Youssef Hilali","doi":"10.1016/j.finel.2024.104273","DOIUrl":"10.1016/j.finel.2024.104273","url":null,"abstract":"<div><div>This study investigates the buckling behavior of cylindrical shells composed of Functionally Graded Materials (FGMs) when subjected to axial compression, challenging conventional assumptions regarding the influence of Poisson’s effect in homogeneous materials. To address this, we utilize a numerical approach employing the Asymptotic Numerical Method (ANM). Contrary to the expected linear pre-buckling behavior associated with a zero Poisson’s ratio, our findings reveal significant non-linearity in the response of FGM structures, emphasizing the influence of additional non-linear factors inherent in the behavior of advanced composites. Through an extensive numerical analysis conducted using a customized Matlab code, we examine the buckling and post-buckling characteristics of FGM shells with varying surface compositions, particularly focusing on configurations incorporating <span><math><mrow><msub><mrow><mi>Al</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and <span><math><mi>Al</mi></math></span> on the upper surface. To elucidate our findings, we present numerical examples comparing two FGM scenarios (<span><math><mrow><msub><mrow><mi>Al</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>/</mo><mi>Al</mi></mrow></math></span> and <span><math><mrow><mi>Al</mi><mo>/</mo><msub><mrow><mi>Al</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>) in terms of critical buckling and FGM distribution. Additionally, we validate our results by employing the commercial software Abaqus with Riks-based finite element method and Newton–Raphson solver.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104273"},"PeriodicalIF":3.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual failure analysis of 3D structures under cyclic loads using bFS-FEM based numerical approaches 使用基于 bFS-FEM 的数值方法对循环载荷下的 3D 结构进行双重失效分析
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-11-02 DOI: 10.1016/j.finel.2024.104272
Phuc L.H. Ho , Canh V. Le , Changkye Lee , Dung T. Tran , Phuong H. Nguyen , Jurng-Jae Yee
{"title":"Dual failure analysis of 3D structures under cyclic loads using bFS-FEM based numerical approaches","authors":"Phuc L.H. Ho ,&nbsp;Canh V. Le ,&nbsp;Changkye Lee ,&nbsp;Dung T. Tran ,&nbsp;Phuong H. Nguyen ,&nbsp;Jurng-Jae Yee","doi":"10.1016/j.finel.2024.104272","DOIUrl":"10.1016/j.finel.2024.104272","url":null,"abstract":"<div><div>Failure mechanism of 3D structures cannot always be produced by the low-order finite elements due to the so-called volumetric locking effect. In this paper, dual numerical approaches based on the bubble face-based smoothed finite element method (bFS-FEM) are developed, ensuring that the locking problem is prevented and accurate load factors of elastic-perfectly plastic structures under cyclic actions are achieved. The failure mechanisms, in terms of plastic dissipation, are realized as incremental or alternative plastic failure modes, enabling different treatments in engineering practices. Moreover, the pseudo-static approach is capable of providing three-dimensional stress fields at the failure state, which is crucial for structural design. Interaction diagrams associated with various load-types and-ranges are illustrated in numerical experiments, showing that the bearing capacity envelopes of structures under cyclic loads are evidently smaller than that of proportional loads.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104272"},"PeriodicalIF":3.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D analysis of reinforced concrete structural components using a multi-surface elasto-plastic-anisotropic-damage material model 利用多面弹塑性-各向异性-损伤材料模型对钢筋混凝土结构部件进行三维分析
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-10-30 DOI: 10.1016/j.finel.2024.104271
A. Torabizadeh , A. Sarikaya , R.E. Erkmen
{"title":"3D analysis of reinforced concrete structural components using a multi-surface elasto-plastic-anisotropic-damage material model","authors":"A. Torabizadeh ,&nbsp;A. Sarikaya ,&nbsp;R.E. Erkmen","doi":"10.1016/j.finel.2024.104271","DOIUrl":"10.1016/j.finel.2024.104271","url":null,"abstract":"<div><div>Elastic-Plastic-Damage material models are widely adopted for the numerical modelling of concrete because of their capability of representing pressure sensitive 3D material behaviour considering permanent inelastic deformations as well as degradation of material moduli beyond the elastic range. In this paper, we develop a non-associative multi-surface plastic-damage material model for the 3D solid element based finite element analysis of reinforced concrete structural components. For the non-associative plastic flow, a linear potential function is adopted, while Menetrey–Willam and Rankine surfaces are adopted as the yield surfaces in compression and tension regimes, respectively. The degradation in the material stiffness under cyclic loading is incorporated by the damage component of the material model, which is generally anisotropic and assumed to be directly dependent on the evolution of the plastic strains. This assumption leads to a computationally efficient algorithm in terms of circumventing iterations to equate the stresses between the coupled damage and plasticity components of the material model. The rigorous details of the developed return-mapping methodology considering both the Cutting-Plane as well as the Closest-Point-Projection algorithms are provided. The material model is employed for the structural level analysis, in which case the concrete bulk is modelled by using an Eight-Node, Six-Degrees-Of-Freedom per-node solid element, and the reinforcement bars and stirrups are modelled by using the conventional Two-Node, Six-Degrees-Of-Freedom per-node Euler–Bernoulli beam-bar element. The inelastic behaviour of the reinforcements is determined by using a simpler elasto-plastic-damage based material model under the assumption of uni-axial stress-strain relations. An in-house fortran software is developed for the computer implementation. Comparisons with results from literature are shown for validation purposes. The validation cases include static analyses of a beam and a column under monotonic loading as well as a shear-wall under cyclic loading.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104271"},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient thermal modeling of laser directed energy deposition using the forward Euler scheme: Methodology, merits and limitations 使用前向欧拉方案对激光定向能沉积进行高效热建模:方法、优点和局限性
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-10-21 DOI: 10.1016/j.finel.2024.104270
Simon Essongue , Vaibhav Nain , Muriel Carin
{"title":"Efficient thermal modeling of laser directed energy deposition using the forward Euler scheme: Methodology, merits and limitations","authors":"Simon Essongue ,&nbsp;Vaibhav Nain ,&nbsp;Muriel Carin","doi":"10.1016/j.finel.2024.104270","DOIUrl":"10.1016/j.finel.2024.104270","url":null,"abstract":"<div><div>This paper explores mesoscale conduction-based modeling of Laser Directed Energy Deposition (LDED) for metallic materials. We benchmark the forward Euler (explicit) time integration strategy against the backward Euler (implicit) scheme using two experimentally validated simulations. Our results demonstrate the explicit scheme’s faster computational speed. Additionally, we identify previously overlooked flaws associated with its application in additive manufacturing. However, we also demonstrate that it encounters limitations when applied to LDED and highlight the need for a more stable explicit scheme.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104270"},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimum thickness design method for micro-shell structure embedded in 3D macrostructure 三维宏观结构中嵌入微壳结构的最佳厚度设计方法
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-10-17 DOI: 10.1016/j.finel.2024.104266
Rina Nagai , Masatoshi Shimoda , Musaddiq Al Ali
{"title":"Optimum thickness design method for micro-shell structure embedded in 3D macrostructure","authors":"Rina Nagai ,&nbsp;Masatoshi Shimoda ,&nbsp;Musaddiq Al Ali","doi":"10.1016/j.finel.2024.104266","DOIUrl":"10.1016/j.finel.2024.104266","url":null,"abstract":"<div><div>In this study, we propose a multiscale thickness optimization method for designing micro-shell structure assuming that the macrostructure consists of multiple micro-shell structures. The micro-shell structures are connected to the macrostructure using the NIAH (Novel numerical implementation of asymptotic homogenization) method. The distributed thickness of the micro-shell structures is used as design variable. A squared error norm between actual and target displacements is minimized for controlling the displacements at arbitrary points of the macrostructure to the target values under the total volume constraint including the volume of the micro-shell structures. This design is formulated as a distributed optimization problem, and the thickness gradient function is theoretically derived. The derived sensitivity function is applied to the scalar-type H<sup>1</sup> gradient method to efficiently obtain the optimal thickness distribution of the micro-shell structures. Numerical examples demonstrate the effectiveness of the proposed method to optimize the thickness distribution of complex micro-shell structures.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104266"},"PeriodicalIF":3.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive stopping criterion of iterative solvers for efficient computational cost reduction: Application to Navier–Stokes with thermal coupling 有效降低计算成本的迭代求解器自适应停止准则:热耦合纳维-斯托克斯应用
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-10-15 DOI: 10.1016/j.finel.2024.104263
Ghaniyya Medghoul, Gabriel Manzinali, Elie Hachem, Aurélien Larcher
{"title":"Adaptive stopping criterion of iterative solvers for efficient computational cost reduction: Application to Navier–Stokes with thermal coupling","authors":"Ghaniyya Medghoul,&nbsp;Gabriel Manzinali,&nbsp;Elie Hachem,&nbsp;Aurélien Larcher","doi":"10.1016/j.finel.2024.104263","DOIUrl":"10.1016/j.finel.2024.104263","url":null,"abstract":"<div><div>In this article, a strategy for efficient computational cost reduction of numerical simulations for complex industrial applications is developed and evaluated on multiphysics problems. The approach is based on the adaptive stopping criterion for iterative linear solvers previously implemented for elliptic partial differential equations and the convection–diffusion equation. Control of the convergence of iterative linear solvers is inferred from <em>a posteriori</em> error estimators used for anisotropic mesh adaptation. Provided that the computed error indicator provides an equivalent control on the discretization error, it is a suitable ingredient to assess when enough accuracy has been reached so that iterations of algebraic solvers can be stopped. In practice the iterative solution is stopped when the algebraic error is lower than a percentage of the estimated discretization error. The proposed method proves to be an effective cost-free strategy to reduce the number of iterations needed without degrading the accuracy of the solution. The discretization in the current work is based on stabilized finite elements, while the Generalized Minimal Residual method (GMRES) is used as iterative linear solver. Numerical experiments are performed of increasing complexity, from manufactured solutions to industrial configurations to evaluate the efficiency and the strengths of the proposed adaptive method.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104263"},"PeriodicalIF":3.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-objective topological design considering functionally graded materials and coated fiber reinforcement 考虑功能分级材料和涂层纤维加固的多目标拓扑设计
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-10-09 DOI: 10.1016/j.finel.2024.104269
Hyunseung Ryu , Jeonghoon Yoo
{"title":"Multi-objective topological design considering functionally graded materials and coated fiber reinforcement","authors":"Hyunseung Ryu ,&nbsp;Jeonghoon Yoo","doi":"10.1016/j.finel.2024.104269","DOIUrl":"10.1016/j.finel.2024.104269","url":null,"abstract":"<div><div>This study presents a multi-objective topology optimization method tailored to structures fabricated from functionally graded materials (FGMs), coated FGMs, and coated fiber-reinforced composite materials (FRCMs) with fixed fiber thickness. The design objective is the simultaneous minimization of elastic and thermal compliance. The material properties of these composite materials were derived to generate datasets using the representative volume element method under periodic boundary conditions. Subsequently, machine learning modules were developed based on the datasets to combine with the design process. The multi-objective optimization problem was addressed using the weighted sum method ensuring the generation of the Pareto front. The adaptive weighting strategy is employed to avoid biased results toward a single objective function. To define the coated boundaries within the design domain, image post-processing techniques such as convolution filters, interpolation schemes, and erosion methods were employed on the material layout information of the optimized FGM structures. Through numerical examples, optimized material layouts for coated assemblies incorporating FGMs and FRCMs are presented, with the performance verified through objective function values.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104269"},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of anomalies in supporting structures on the validation of finite-element blade bearing models 支撑结构异常对有限元叶片轴承模型验证的影响
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-10-09 DOI: 10.1016/j.finel.2024.104268
Matthis Graßmann, Matthias Stammler, Oliver Menck, Florian Schleich
{"title":"The influence of anomalies in supporting structures on the validation of finite-element blade bearing models","authors":"Matthis Graßmann,&nbsp;Matthias Stammler,&nbsp;Oliver Menck,&nbsp;Florian Schleich","doi":"10.1016/j.finel.2024.104268","DOIUrl":"10.1016/j.finel.2024.104268","url":null,"abstract":"<div><div>Finite-element analysis is the only means to determine the load distribution of large slewing bearings considering flexible bearing rings and supporting structures. For reliable results, the plausibility of the models need to be validated. Previous attempts on validating a finite-element model of a slewing bearing against measurement results have indicated a huge dependence of the deformation on tolerances in the supporting structures. This dependence has not yet been explored in research in favor of a focus on tolerances of the bearing itself. The present work explores different irregularities of the flange that connects to the outer ring of the bearing and their effects on bearing deformation. The results show that single dents or bulges on the flange and inclined flanges of the adapter ring significantly change the load distribution and contact angles of the bearing. They also aggravate the risk of truncation. For the calculated fatigue life however, the bearings seem to be robust to these uncertainties for the shown load cases. The dimensions of the investigated tolerances are verified by comparing the resulting deformations of the bearing outer ring against experimental data.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104268"},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical and experimental predictions of the static behaviour of thick sandwich beams using a mixed {3,2}-RZT formulation 使用混合 {3,2}-RZT 公式对厚夹层梁的静态行为进行数值和实验预测
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-10-07 DOI: 10.1016/j.finel.2024.104267
M. Sorrenti, M. Gherlone
{"title":"Numerical and experimental predictions of the static behaviour of thick sandwich beams using a mixed {3,2}-RZT formulation","authors":"M. Sorrenti,&nbsp;M. Gherlone","doi":"10.1016/j.finel.2024.104267","DOIUrl":"10.1016/j.finel.2024.104267","url":null,"abstract":"<div><div>This paper presents a numerical and experimental assessment of the static behaviour of thick sandwich beams using the mixed {3,2}-Refined Zigzag Theory (<span><math><mrow><mtext>RZ</mtext><msubsup><mi>T</mi><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup></mrow></math></span>). The displacement field of the <span><math><mrow><mtext>RZ</mtext><msubsup><mi>T</mi><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup></mrow></math></span> assumes a piecewise continuous cubic zigzag distribution for the axial contribution and a smoothed parabolic variation for the transverse one. At the same time, the out-of-plane stresses are assumed continuous a-priori: the transverse normal stress is given as a third-order power series expansion of the thickness coordinate, whereas the transverse shear one is derived through the integration of Cauchy's equation. The equilibrium equations and consistent boundary conditions are derived through a mixed variational statement based on the Hellinger-Reissner (HR) theorem and a penalty functional to enforce the strain compatibilities between the assumed independent stress fields and those obtained with the constitutive equations. Based on the proposed model, a simple C<sup>0</sup>-continuous two-node beam finite element is formulated (<span><math><mrow><mn>2</mn><mi>B</mi><mo>−</mo><mtext>RZ</mtext><msubsup><mi>T</mi><mrow><mo>{</mo><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup></mrow></math></span>). Firstly, the analytical and FE model accuracies of the presented formulation are addressed, and comparisons with the available three-dimensional elasticity solutions are performed. Subsequently, an experimental campaign is conducted to evaluate the static response of various thick sandwich beam specimens in three- and four-point bending configurations. The thick beam specimens are equipped with Distributed Fibre Optic Sensors (DFOS) embedded in the sandwich layup to measure axial deformation at the sandwich interfaces directly. Finally, the experimental data are compared with the available numerical models, highlighting the formulated numerical model's performances and limitations.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104267"},"PeriodicalIF":3.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spur gear tooth root stress analysis by a 3D flexible multibody approach and a full-FE contact-based formulation 通过三维柔性多体方法和全 FE 接触式公式分析正齿轮齿根应力
IF 3.5 3区 工程技术
Finite Elements in Analysis and Design Pub Date : 2024-10-04 DOI: 10.1016/j.finel.2024.104264
Valentin Mouton , Emmanuel Rigaud , Cyril Chevrel-Fraux , Pierre Casanova , Joël Perret-Liaudet
{"title":"Spur gear tooth root stress analysis by a 3D flexible multibody approach and a full-FE contact-based formulation","authors":"Valentin Mouton ,&nbsp;Emmanuel Rigaud ,&nbsp;Cyril Chevrel-Fraux ,&nbsp;Pierre Casanova ,&nbsp;Joël Perret-Liaudet","doi":"10.1016/j.finel.2024.104264","DOIUrl":"10.1016/j.finel.2024.104264","url":null,"abstract":"<div><div>This paper proposes an original method to determine the gear tooth root stresses from a 3D finite element (FE) flexible multibody approach and a full-FE contact-based formulation. The contact problem is dealt with an augmented Lagrangian formulation whereas the analysis is performed by a preconditioned gradient solver (PCG). Tooth flank modifications are directly introduced within the 3D model. This one is thus able to take into account straightforwardly tooth bending and Hertzian-like deformations as well as the micro-geometry effect. Simulations are performed for several mesh periods, without making any assumptions about load distribution, tooth and gear blank flexibilities, and possible premature or delayed contacts between tooth pairs in quasi-static conditions. A precise distribution of tooth root stresses associated with instantaneous contacts conditions is then computed. For this study, a single stage spur gear with micro-geometry modifications corresponding to an arc-shaped profile crowning is modeled. Several output torques are considered. The obtained results are compared to those obtained using a 2D FE ISO-based model, where external forces are applied along the theoretical line of action.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104264"},"PeriodicalIF":3.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信