支撑结构异常对有限元叶片轴承模型验证的影响

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
{"title":"支撑结构异常对有限元叶片轴承模型验证的影响","authors":"","doi":"10.1016/j.finel.2024.104268","DOIUrl":null,"url":null,"abstract":"<div><div>Finite-element analysis is the only means to determine the load distribution of large slewing bearings considering flexible bearing rings and supporting structures. For reliable results, the plausibility of the models need to be validated. Previous attempts on validating a finite-element model of a slewing bearing against measurement results have indicated a huge dependence of the deformation on tolerances in the supporting structures. This dependence has not yet been explored in research in favor of a focus on tolerances of the bearing itself. The present work explores different irregularities of the flange that connects to the outer ring of the bearing and their effects on bearing deformation. The results show that single dents or bulges on the flange and inclined flanges of the adapter ring significantly change the load distribution and contact angles of the bearing. They also aggravate the risk of truncation. For the calculated fatigue life however, the bearings seem to be robust to these uncertainties for the shown load cases. The dimensions of the investigated tolerances are verified by comparing the resulting deformations of the bearing outer ring against experimental data.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of anomalies in supporting structures on the validation of finite-element blade bearing models\",\"authors\":\"\",\"doi\":\"10.1016/j.finel.2024.104268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Finite-element analysis is the only means to determine the load distribution of large slewing bearings considering flexible bearing rings and supporting structures. For reliable results, the plausibility of the models need to be validated. Previous attempts on validating a finite-element model of a slewing bearing against measurement results have indicated a huge dependence of the deformation on tolerances in the supporting structures. This dependence has not yet been explored in research in favor of a focus on tolerances of the bearing itself. The present work explores different irregularities of the flange that connects to the outer ring of the bearing and their effects on bearing deformation. The results show that single dents or bulges on the flange and inclined flanges of the adapter ring significantly change the load distribution and contact angles of the bearing. They also aggravate the risk of truncation. For the calculated fatigue life however, the bearings seem to be robust to these uncertainties for the shown load cases. The dimensions of the investigated tolerances are verified by comparing the resulting deformations of the bearing outer ring against experimental data.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24001628\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001628","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑到柔性轴承套圈和支撑结构,有限元分析是确定大型回转支承载荷分布的唯一方法。为了获得可靠的结果,需要对模型的合理性进行验证。之前根据测量结果验证回转支承有限元模型的尝试表明,变形与支承结构的公差有很大关系。由于研究重点是轴承本身的公差,因此尚未对这种依赖性进行探讨。本研究探讨了连接轴承外圈的凸缘的各种不规则情况及其对轴承变形的影响。结果表明,法兰上的单个凹痕或凸起以及适配器外圈的倾斜法兰会显著改变轴承的载荷分布和接触角。它们还增加了截断的风险。然而,就计算的疲劳寿命而言,轴承在所示载荷情况下对这些不确定性似乎是稳健的。通过将轴承外圈的变形结果与实验数据进行比较,验证了所研究的公差尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of anomalies in supporting structures on the validation of finite-element blade bearing models
Finite-element analysis is the only means to determine the load distribution of large slewing bearings considering flexible bearing rings and supporting structures. For reliable results, the plausibility of the models need to be validated. Previous attempts on validating a finite-element model of a slewing bearing against measurement results have indicated a huge dependence of the deformation on tolerances in the supporting structures. This dependence has not yet been explored in research in favor of a focus on tolerances of the bearing itself. The present work explores different irregularities of the flange that connects to the outer ring of the bearing and their effects on bearing deformation. The results show that single dents or bulges on the flange and inclined flanges of the adapter ring significantly change the load distribution and contact angles of the bearing. They also aggravate the risk of truncation. For the calculated fatigue life however, the bearings seem to be robust to these uncertainties for the shown load cases. The dimensions of the investigated tolerances are verified by comparing the resulting deformations of the bearing outer ring against experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信