{"title":"使用基于 bFS-FEM 的数值方法对循环载荷下的 3D 结构进行双重失效分析","authors":"","doi":"10.1016/j.finel.2024.104272","DOIUrl":null,"url":null,"abstract":"<div><div>Failure mechanism of 3D structures cannot always be produced by the low-order finite elements due to the so-called volumetric locking effect. In this paper, dual numerical approaches based on the bubble face-based smoothed finite element method (bFS-FEM) are developed, ensuring that the locking problem is prevented and accurate load factors of elastic-perfectly plastic structures under cyclic actions are achieved. The failure mechanisms, in terms of plastic dissipation, are realized as incremental or alternative plastic failure modes, enabling different treatments in engineering practices. Moreover, the pseudo-static approach is capable of providing three-dimensional stress fields at the failure state, which is crucial for structural design. Interaction diagrams associated with various load-types and-ranges are illustrated in numerical experiments, showing that the bearing capacity envelopes of structures under cyclic loads are evidently smaller than that of proportional loads.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual failure analysis of 3D structures under cyclic loads using bFS-FEM based numerical approaches\",\"authors\":\"\",\"doi\":\"10.1016/j.finel.2024.104272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Failure mechanism of 3D structures cannot always be produced by the low-order finite elements due to the so-called volumetric locking effect. In this paper, dual numerical approaches based on the bubble face-based smoothed finite element method (bFS-FEM) are developed, ensuring that the locking problem is prevented and accurate load factors of elastic-perfectly plastic structures under cyclic actions are achieved. The failure mechanisms, in terms of plastic dissipation, are realized as incremental or alternative plastic failure modes, enabling different treatments in engineering practices. Moreover, the pseudo-static approach is capable of providing three-dimensional stress fields at the failure state, which is crucial for structural design. Interaction diagrams associated with various load-types and-ranges are illustrated in numerical experiments, showing that the bearing capacity envelopes of structures under cyclic loads are evidently smaller than that of proportional loads.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24001665\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001665","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dual failure analysis of 3D structures under cyclic loads using bFS-FEM based numerical approaches
Failure mechanism of 3D structures cannot always be produced by the low-order finite elements due to the so-called volumetric locking effect. In this paper, dual numerical approaches based on the bubble face-based smoothed finite element method (bFS-FEM) are developed, ensuring that the locking problem is prevented and accurate load factors of elastic-perfectly plastic structures under cyclic actions are achieved. The failure mechanisms, in terms of plastic dissipation, are realized as incremental or alternative plastic failure modes, enabling different treatments in engineering practices. Moreover, the pseudo-static approach is capable of providing three-dimensional stress fields at the failure state, which is crucial for structural design. Interaction diagrams associated with various load-types and-ranges are illustrated in numerical experiments, showing that the bearing capacity envelopes of structures under cyclic loads are evidently smaller than that of proportional loads.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.