Trends in Cell Biology最新文献

筛选
英文 中文
Targeting the ubiquitin proteasome system in cancer stem cells. 靶向肿瘤干细胞中的泛素蛋白酶体系统。
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-02-01 Epub Date: 2024-12-24 DOI: 10.1016/j.tcb.2024.11.011
Hind Atta, Dina H Kassem, Mohamed M Kamal, Nadia M Hamdy
{"title":"Targeting the ubiquitin proteasome system in cancer stem cells.","authors":"Hind Atta, Dina H Kassem, Mohamed M Kamal, Nadia M Hamdy","doi":"10.1016/j.tcb.2024.11.011","DOIUrl":"10.1016/j.tcb.2024.11.011","url":null,"abstract":"<p><p>Over the past few years there has been an alarming burst of cancer burden worldwide. Cancer stem cells (CSCs) act as hidden devils within tumors, rendering cancer therapy a strenuous goal. Recently, the ubiquitin proteasome system (UPS) was proved to be an essential contributor to the CSC phenotype. This forum article aims to outline new strategies/technologies targeting UPS modulation in CSCs as a potential novel modality for efficient cancer therapy.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":"97-101"},"PeriodicalIF":13.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adopting GPR75 in treating obesity: unraveling the knowns and unknowns of this orphan GPCR. 采用GPR75治疗肥胖:揭开这种孤儿GPCR的已知和未知。
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-02-01 Epub Date: 2025-01-09 DOI: 10.1016/j.tcb.2024.12.006
Yiao Jiang, Zhao Zhang
{"title":"Adopting GPR75 in treating obesity: unraveling the knowns and unknowns of this orphan GPCR.","authors":"Yiao Jiang, Zhao Zhang","doi":"10.1016/j.tcb.2024.12.006","DOIUrl":"10.1016/j.tcb.2024.12.006","url":null,"abstract":"<p><p>G protein-coupled receptor 75 (GPR75) is emerging as a promising target for obesity treatment, but its exact role in energy regulation remains unclear. This article explores the latest research on GPR75's molecular function, potential ligands, and therapeutic challenges in addressing obesity.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":"102-104"},"PeriodicalIF":13.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fun in the sun: ribosomes defend against UV irradiation. 阳光下的乐趣:核糖体抵御紫外线照射。
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-02-01 Epub Date: 2025-01-16 DOI: 10.1016/j.tcb.2024.12.016
Aaztli R Coria, Emilien Orgebin, Colin Chih-Chien Wu
{"title":"Fun in the sun: ribosomes defend against UV irradiation.","authors":"Aaztli R Coria, Emilien Orgebin, Colin Chih-Chien Wu","doi":"10.1016/j.tcb.2024.12.016","DOIUrl":"10.1016/j.tcb.2024.12.016","url":null,"abstract":"<p><p>The concept that ribosomes are sensors of translational distress has sparked significant interest, although much of the research has been conducted in vitro. A new study by Vind et al. provides in vivo evidence that the ribotoxic stress response (RSR) serves as the first line of defense against ultraviolet (UV) radiation.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":"92-93"},"PeriodicalIF":13.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reacting to reductive stress at the mitochondrial import gate. 对线粒体入口的减压反应。
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-02-01 Epub Date: 2025-01-13 DOI: 10.1016/j.tcb.2024.12.013
Sylvie Callegari
{"title":"Reacting to reductive stress at the mitochondrial import gate.","authors":"Sylvie Callegari","doi":"10.1016/j.tcb.2024.12.013","DOIUrl":"10.1016/j.tcb.2024.12.013","url":null,"abstract":"<p><p>A byproduct of mitochondrial energy production is the generation of reactive oxygen species (ROS). Too much ROS is toxic, but ROS deficiency is equally deleterious (reductive stress). In a recent study, McMinimy et al. uncovered a ubiquitin proteasome-mediated mechanism at the translocase of the outer membrane (TOM) complex, which senses ROS depletion and adjusts mitochondrial protein import accordingly.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":"94-96"},"PeriodicalIF":13.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipids and chromatin: a tale of intriguing connections shaping genomic landscapes. 脂质和染色质:塑造基因组景观的奇妙联系。
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-02-01 Epub Date: 2024-07-25 DOI: 10.1016/j.tcb.2024.06.004
Maria Laura Sosa Ponce, Jennifer A Cobb, Vanina Zaremberg
{"title":"Lipids and chromatin: a tale of intriguing connections shaping genomic landscapes.","authors":"Maria Laura Sosa Ponce, Jennifer A Cobb, Vanina Zaremberg","doi":"10.1016/j.tcb.2024.06.004","DOIUrl":"10.1016/j.tcb.2024.06.004","url":null,"abstract":"<p><p>Recent studies in yeast reveal an intricate interplay between nuclear envelope (NE) architecture and lipid metabolism, and between lipid signaling and both epigenome and genome integrity. In this review, we highlight the reciprocal connection between lipids and histone modifications, which enable metabolic reprogramming in response to nutrients. The endoplasmic reticulum (ER)-NE regulates the compartmentalization and temporal availability of epigenetic metabolites and its lipid composition also impacts nuclear processes, such as transcriptional silencing and the DNA damage response (DDR). We also discuss recent work providing mechanistic insight into lipid droplet (LD) formation and sterols in the nucleus, and the collective data showing Opi1 as a central factor in both membrane sensing and transcriptional regulation of lipid-chromatin interrelated processes.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":"141-152"},"PeriodicalIF":13.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HELLS: the transcriptional sentinel.
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-01-30 DOI: 10.1016/j.tcb.2025.01.004
Selene Mallia, Giulia Gambarelli, Alessia Ciarrocchi, Valentina Fragliasso
{"title":"HELLS: the transcriptional sentinel.","authors":"Selene Mallia, Giulia Gambarelli, Alessia Ciarrocchi, Valentina Fragliasso","doi":"10.1016/j.tcb.2025.01.004","DOIUrl":"https://doi.org/10.1016/j.tcb.2025.01.004","url":null,"abstract":"<p><p>The role of the chromatin remodeler HELicase Lymphoid Specific (HELLS) has been historically associated with DNA methylation and DNA damage repair. However, recent studies have shed light on an unexpected, multimodal, and direct participation of HELLS in transcriptional regulation. This forum article aims to discuss how, through different and context-specific mechanisms, HELLS modulates the expression of functionally related genes favoring transcriptional plasticity and phenotypic adaptation, ultimately safeguarding the genome organization and stability.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insights into actin filament turnover.
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-01-22 DOI: 10.1016/j.tcb.2024.12.009
Wout Oosterheert, Micaela Boiero Sanders, Peter Bieling, Stefan Raunser
{"title":"Structural insights into actin filament turnover.","authors":"Wout Oosterheert, Micaela Boiero Sanders, Peter Bieling, Stefan Raunser","doi":"10.1016/j.tcb.2024.12.009","DOIUrl":"https://doi.org/10.1016/j.tcb.2024.12.009","url":null,"abstract":"<p><p>The dynamic turnover of actin filaments drives the morphogenesis and migration of all eukaryotic cells. This review summarizes recent insights into the molecular mechanisms of actin polymerization and disassembly obtained through high-resolution structures of actin filament assemblies. We first describe how, upon polymerization, actin subunits age within the filament through changes in their associated adenine nucleotide. We then focus on the molecular basis of actin filament growth at the barbed end and how this process is modulated by core regulators such as profilin, formin, and capping protein (CP). Finally, the mechanisms underlying actin filament pointed-end depolymerization through disassembly factors cofilin/cyclase-associated protein (CAP) or DNase I are discussed. These findings contribute to a structural understanding of how actin filament dynamics are regulated in a complex cellular environment.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the signaling potential of GPI-anchored proteins through lipolytic cleavage.
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-01-22 DOI: 10.1016/j.tcb.2024.12.010
Razvan Borza, Elisa Matas-Rico, Anastassis Perrakis, Wouter H Moolenaar
{"title":"Unlocking the signaling potential of GPI-anchored proteins through lipolytic cleavage.","authors":"Razvan Borza, Elisa Matas-Rico, Anastassis Perrakis, Wouter H Moolenaar","doi":"10.1016/j.tcb.2024.12.010","DOIUrl":"https://doi.org/10.1016/j.tcb.2024.12.010","url":null,"abstract":"<p><p>Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) regulate numerous biological processes through interaction with signaling effectors at the cell surface. As a unique feature, GPI-APs can be released from their anchors by multi-pass GPI-specific phospholipases (types A2, C, and D) to impact signaling networks, phenotype, and cell fate; however, many questions remain outstanding. Here, we discuss and expand our current understanding of the distinct GPI-specific phospholipases, their substrates, effector pathways, and emerging physiological roles, with a focus on the six-transmembrane ecto-phospholipases GDE2 (GDPD5) and GDE3 (GDPD2). We provide structural insight into their AlphaFold-predicted inner workings, revealing how transmembrane (TM) domain plasticity may enable GPI-anchor binding and hydrolysis. Understanding lipolytic cleavage of GPI-APs adds a new dimension to their signaling capabilities and biological functions.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Splice age: mTORC1-mediated RNA splicing in metabolism and ageing.
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-01-21 DOI: 10.1016/j.tcb.2025.01.001
Pablo Lanuza-Gracia, Jonas Juan-Mateu, Juan Valcárcel
{"title":"Splice age: mTORC1-mediated RNA splicing in metabolism and ageing.","authors":"Pablo Lanuza-Gracia, Jonas Juan-Mateu, Juan Valcárcel","doi":"10.1016/j.tcb.2025.01.001","DOIUrl":"https://doi.org/10.1016/j.tcb.2025.01.001","url":null,"abstract":"<p><p>The target of rapamycin complex mTORC1 has key roles in cell growth and metabolism and its inhibition delays ageing. Recent work by Ogawa et al. in Caenorhabditis elegans argues that modulation of pre-mRNA splicing factors and alternative splicing are key mediators of mTORC1 signalling and can enhance longevity.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of lipid droplet dynamics and lipid homeostasis by hydroxysteroid dehydrogenase proteins: (Trends in Cell Biology, published online November 26, 2024). 羟基类固醇脱氢酶蛋白对脂滴动力学和脂质稳态的调节:(《细胞生物学趋势》,在线发表于2024年11月26日)。
IF 13 1区 生物学
Trends in Cell Biology Pub Date : 2025-01-20 DOI: 10.1016/j.tcb.2024.12.012
Bin Liang, Lin Fu, Pingsheng Liu
{"title":"Regulation of lipid droplet dynamics and lipid homeostasis by hydroxysteroid dehydrogenase proteins: (Trends in Cell Biology, published online November 26, 2024).","authors":"Bin Liang, Lin Fu, Pingsheng Liu","doi":"10.1016/j.tcb.2024.12.012","DOIUrl":"10.1016/j.tcb.2024.12.012","url":null,"abstract":"","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信