Rice Science最新文献

筛选
英文 中文
Ameliorative Effects of Paclobutrazol via Physio-Biochemical and Molecular Manifestation in Rice under Water Deficit Stress 五氯丁唑通过生理生化和分子表现对缺水胁迫下水稻的改善作用
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.03.004
{"title":"Ameliorative Effects of Paclobutrazol via Physio-Biochemical and Molecular Manifestation in Rice under Water Deficit Stress","authors":"","doi":"10.1016/j.rsci.2024.03.004","DOIUrl":"10.1016/j.rsci.2024.03.004","url":null,"abstract":"<div><div>To comprehensively explore the physio-biochemical and molecular changes of paclobutrazol (PBZ) at the ideal dose under water deficit stress (WDS) conditions, we investigated the effects of 100 mg/kg PBZ applied via drenching on various physio-biochemical and molecular parameters in three rice varieties (N22, IR64, and IR64 DTY1.1) under both mild [75%‒80% relative water content (RWC)] and severe (60%‒65% RWC) WDS conditions. The results showed that PBZ treatment positively influenced the physio-biochemical parameters, significantly increasing dry matter (16.27%‒61.91%), RWC (6.48%‒ 16.34%), membrane stability index (4.37%‒10.35%), and total chlorophyll content (8.97%‒29.09%) in the rice varieties under both mild and severe WDS. Moreover, PBZ treatment reduced drought susceptibility (0.83‒0.95) and enhanced drought tolerance efficiency (60.92%‒86.78%), indicating its potential as a stress-mitigating agent. Global methylation analysis revealed changes in DNA methylation patterns, indicating the regulatory influence of PBZ on gene expression. The expression analysis of genes involved in the diversification of geranylgeranyl pyrophosphate towards the biosynthesis of abscisic acid, gibberellin acid, and chlorophyll showed alterations in their expression levels, suggesting the involvement of PBZ in the isoprenoid pathway. Overall, this study provides valuable insights into the potential mechanisms by which PBZ modulates physiological and molecular responses in rice plants under WDS. The findings highlight the importance of PBZ as a promising agent for enhancing drought tolerance in rice and offer valuable information for future research in crop stress management.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141033981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Appropriate Supply of Ammonium Nitrogen and Ammonium Nitrate Reduces Cadmium Content in Rice Seedlings by Inhibiting Cadmium Uptake and Transport 适当供应氨和硝酸铵,通过抑制镉的吸收和转运降低水稻幼苗的镉含量
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.02.007
{"title":"Appropriate Supply of Ammonium Nitrogen and Ammonium Nitrate Reduces Cadmium Content in Rice Seedlings by Inhibiting Cadmium Uptake and Transport","authors":"","doi":"10.1016/j.rsci.2024.02.007","DOIUrl":"10.1016/j.rsci.2024.02.007","url":null,"abstract":"<div><div>Reasonable nitrogen (N) application is a promising strategy for reducing crop cadmium (Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms (NH<sub>4</sub>NO<sub>3</sub>, NH<sub>4</sub>Cl, and KNO<sub>3</sub>) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive <em>indica</em> rice accessions. The results indicated that the Cd tolerance of N-sensitive <em>indica</em> accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive <em>indica</em> accessions decreased with an appropriate supply of NH<sub>4</sub>NO<sub>3</sub> and NH<sub>4</sub>Cl, whereas they were comparable or slightly increased with increased KNO<sub>3</sub>. Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH<sub>4</sub>NO<sub>3</sub> and NH<sub>4</sub>Cl also inhibited the instantaneous root Cd<sup>2+</sup> uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH<sub>4</sub>NO<sub>3</sub> and NH<sub>4</sub>Cl, is likely achieved by reducing the transcription of <em>OsNRAMP1</em> and <em>OsIRT1</em>. In summary, our findings reveal that an appropriate supply of NH<sub>4</sub>NO<sub>3</sub> and NH<sub>4</sub>Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139876064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rice Heat Tolerance Breeding: A Comprehensive Review and Forward Gaze 水稻耐热育种:全面回顾与前瞻
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-07-01 DOI: 10.1016/j.rsci.2024.02.004
{"title":"Rice Heat Tolerance Breeding: A Comprehensive Review and Forward Gaze","authors":"","doi":"10.1016/j.rsci.2024.02.004","DOIUrl":"10.1016/j.rsci.2024.02.004","url":null,"abstract":"<div><p>The yield potential of rice is seriously affected by heat stress due to climate change. Since rice is a staple food globally, it is imperative to develop heat-resistant rice varieties. Thus, a thorough understanding of the complex molecular mechanisms underlying heat tolerance and the impact of high temperatures on various critical stages of the crop is needed. Adoption of both conventional and innovative breeding strategies offers a long-term advantage over other methods, such as agronomic practices, to counter heat stress. In this review, we summarize the effects of heat stress, regulatory pathways for heat tolerance, phenotyping strategies, and various breeding methods available for developing heat-tolerant rice. We offer perspectives and knowledge to guide future research endeavors aimed at enhancing the ability of rice to withstand heat stress and ultimately benefit humanity.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000131/pdfft?md5=92033ede9f915e1b26fe120b0ad362f9&pid=1-s2.0-S1672630824000131-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139819161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salinity Stress Deteriorates Grain Yield and Increases 2-Acetyl-1-Pyrroline Content in Rice 盐分胁迫会降低水稻产量并增加 2-乙酰基-1-吡咯啉含量
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-07-01 DOI: 10.1016/j.rsci.2024.02.010
{"title":"Salinity Stress Deteriorates Grain Yield and Increases 2-Acetyl-1-Pyrroline Content in Rice","authors":"","doi":"10.1016/j.rsci.2024.02.010","DOIUrl":"10.1016/j.rsci.2024.02.010","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000192/pdfft?md5=3c76dcabb2b358cd5555dff7a336865a&pid=1-s2.0-S1672630824000192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Biochar Inoculation with Bacillus megaterium on Rice Soil Phosphorus Fraction Transformation and Bacterial Community Dynamics 生物炭接种巨型芽孢杆菌对水稻土壤磷组分转化和细菌群落动态的影响
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-07-01 DOI: 10.1016/j.rsci.2024.04.003
{"title":"Effects of Biochar Inoculation with Bacillus megaterium on Rice Soil Phosphorus Fraction Transformation and Bacterial Community Dynamics","authors":"","doi":"10.1016/j.rsci.2024.04.003","DOIUrl":"10.1016/j.rsci.2024.04.003","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000349/pdfft?md5=7ec875470d3bc3c9ba0cc77171c469e7&pid=1-s2.0-S1672630824000349-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140763485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random Amplification Polymorphic DNA and Agro-Morphological Traits-Based Fingerprinting for Detection of Genetic Divergence in Indian Black Rice 基于 RAPD 和农业形态特征的指纹图谱检测印度黑米的遗传差异
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-07-01 DOI: 10.1016/j.rsci.2024.03.002
{"title":"Random Amplification Polymorphic DNA and Agro-Morphological Traits-Based Fingerprinting for Detection of Genetic Divergence in Indian Black Rice","authors":"","doi":"10.1016/j.rsci.2024.03.002","DOIUrl":"10.1016/j.rsci.2024.03.002","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000222/pdfft?md5=6203a6f6d8f6f284105516b8cecd09a0&pid=1-s2.0-S1672630824000222-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anticancer Activity of Rice Callus Suspension Cultures from Aromatic Varieties and Metabolites Regulated in Treated Cancer Cell Lines 芳香品种水稻胼胝体悬浮培养物的抗癌活性和受治疗癌症细胞系的代谢调控
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-07-01 DOI: 10.1016/j.rsci.2024.04.002
{"title":"Anticancer Activity of Rice Callus Suspension Cultures from Aromatic Varieties and Metabolites Regulated in Treated Cancer Cell Lines","authors":"","doi":"10.1016/j.rsci.2024.04.002","DOIUrl":"10.1016/j.rsci.2024.04.002","url":null,"abstract":"<div><p>Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures (RCSC) and seed extracts prepared from aromatic rice varieties were used to evaluate the cytotoxic impact on human colon and lung cancer cell lines, as well as a normal control cell line, using Taxol as a positive control. RCSC and seed extracts from two Indian aromatic rice varieties were applied at different concentrations to treat the cancer cell lines and normal lung fibroblasts over varying time intervals. Apoptosis was assessed in 1:5 dilutions of the A549 and HT-29 cell lines treated with RCSC for 72 h, using propidium iodide staining and flow cytometry. RCSC showed a more potent cytotoxic effect than seed extracts with minimal effect on the normal cell line, in contrast to Taxol. Confocal microscopy and flow cytometry further confirmed the apoptotic effect of RCSC. Gas chromatography-mass spectrometry-based metabolic profiling identified metabolites involved in cytotoxicity and highlighted altered pathways. RCSC is proposed as an alternative source for the development of novel anticancer drugs with reduced side effects.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000337/pdfft?md5=fa0271055bf64c204a306ce41e9f30c9&pid=1-s2.0-S1672630824000337-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140791847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct-Seeded Rice: Genetic Improvement of Game-Changing Traits for Better Adaption 直播稻:改变性状的遗传改良以提高适应性
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-07-01 DOI: 10.1016/j.rsci.2024.04.006
{"title":"Direct-Seeded Rice: Genetic Improvement of Game-Changing Traits for Better Adaption","authors":"","doi":"10.1016/j.rsci.2024.04.006","DOIUrl":"10.1016/j.rsci.2024.04.006","url":null,"abstract":"<div><p>The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water costs accompanying it, direct-seeded rice (DSR) is unquestionably one of the most practical solutions. Despite its resource and climate-friendly advantages, early maturing rice faces weed competitiveness and seedling establishment challenges. Resolving these issues is crucial for promoting its wider adoption among farmers, presenting it as a more effective sustainable rice cultivation method globally. Diverse traditional and contemporary breeding methods are employed to mitigate the limitations of the DSR approach, leveraging advanced techniques such as speed breeding and genome editing. Focusing on key traits like mesocotyl length elongation, early seedling vigor, root system architecture, and weed competitiveness holds promise for transformative improvements in DSR adaptation at a broader scale within farming communities. This review aims to summarize how these features contribute to increased crop production in DSR conditions and explore the research efforts focusing on enhancing DSR adaptation through these traits. Emphasizing the pivotal role of these game-changing traits in DSR adaptation, our analysis sheds light on their potential transformative impact and offers valuable insights for advancing DSR practices.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000386/pdfft?md5=90ca0fa287647c9ad944842de770c337&pid=1-s2.0-S1672630824000386-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141030646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seed Storability in Rice: Physiological Foundations, Molecular Mechanisms, and Applications in Breeding 水稻的种子贮藏性:生理基础、分子机制及育种应用
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-07-01 DOI: 10.1016/j.rsci.2024.02.011
{"title":"Seed Storability in Rice: Physiological Foundations, Molecular Mechanisms, and Applications in Breeding","authors":"","doi":"10.1016/j.rsci.2024.02.011","DOIUrl":"10.1016/j.rsci.2024.02.011","url":null,"abstract":"<div><p>Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumption and production worldwide. However, its food value and seed viability tend to decline during storage. Understanding the physiological responses and molecular mechanisms of aging tolerance forms the basis for enhancing seed storability in rice. This review outlines the latest progress in influential factors, evaluation methods, and identification indices of seed storability. It also discusses the physiological consequences, molecular mechanisms, and strategies for breeding aging-tolerant rice in detail. Finally, it highlights challenges in seed storability research that require future attention. This review offers a theoretical foundation and research direction for uncovering the mechanisms behind seed storability and breeding aging-tolerant rice.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000209/pdfft?md5=c4ed1e2271ecfd105f92a2c34c846dcf&pid=1-s2.0-S1672630824000209-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host-Induced Gene Silencing of Effector AGLIP1 Enhanced Resistance of Rice to Rhizoctonia solani AG1-IA 宿主诱导的效应基因 AGLIP1 基因沉默增强了水稻对根瘤菌 AG1-IA 的抗性
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-07-01 DOI: 10.1016/j.rsci.2024.04.005
{"title":"Host-Induced Gene Silencing of Effector AGLIP1 Enhanced Resistance of Rice to Rhizoctonia solani AG1-IA","authors":"","doi":"10.1016/j.rsci.2024.04.005","DOIUrl":"10.1016/j.rsci.2024.04.005","url":null,"abstract":"<div><p>Rice sheath blight, caused by <em>Rhizoctonia solani</em> AG1-IA, is a major disease in rice-growing areas worldwide. Effectors of phytopathogenic fungi play important roles during the infection process of fungal pathogens onto their host plants. However, the molecular mechanisms by which <em>R</em>. <em>solani</em> effectors regulate rice immunity are not well understood. Through prediction, 78 candidate effector molecules were identified. Using the tobacco rattle virus-host induced gene silencing (TRV-HIGS) system, 45 RNAi constructs of effector genes were infiltrated into <em>Nicotiana benthamiana</em> leaves. The results revealed that eight of these constructs resulted in a significant reduction in necrosis caused by infection with the AG1-IA strain GD-118. Additionally, stable rice transformants carrying the double-stranded RNA construct for one of the effector genes, <em>AGLIP1</em>, were generated to further verify the function of this gene. The suppression of the <em>AGLIP1</em> gene increased the resistance of both <em>N. benthamiana</em> and rice against GD-118, and also affected the growth rate of GD-118, indicating that <em>AGLIP1</em> is a key pathogenic factor. Small RNA sequencing showed that the HIGS vectors were processed into siRNAs within the plants and then translocated to the fungi, leading to the silencing of the target genes. As a result, <em>AGLIP1</em> might be an excellent candidate for HIGS, thereby enhancing crop resistance against the pathogen and contributing to the control of <em>R. solani</em> infection.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000362/pdfft?md5=87fedcd4820e98ceb099d407eec405ae&pid=1-s2.0-S1672630824000362-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140767432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信