Rice Science最新文献

筛选
英文 中文
Higher Grain-Filling Rate in Inferior Spikelets of Tolerant Rice Genotype Offset Grain Yield Loss under Post-Anthesis High Night Temperatures 耐寒水稻基因型下位小穗的较高籽粒充实率抵消了开花后高夜温条件下的籽粒产量损失
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.06.003
{"title":"Higher Grain-Filling Rate in Inferior Spikelets of Tolerant Rice Genotype Offset Grain Yield Loss under Post-Anthesis High Night Temperatures","authors":"","doi":"10.1016/j.rsci.2024.06.003","DOIUrl":"10.1016/j.rsci.2024.06.003","url":null,"abstract":"<div><div>Increased nighttime respiratory losses decrease the amount of photoassimilates available for plant growth and yield. We hypothesized that the increased respiratory carbon loss under high night temperatures (HNT) could be compensated for by increased photosynthesis during the day following HNT exposure. Two rice genotypes, Vandana (HNT-sensitive) and Nagina 22 (HNT-tolerant), were exposed to HNT (4 °C above the control) from flowering to physiological maturity. They were assessed for alterations in the carbon balance of the source (flag leaf) and its subsequent impact on grain filling dynamics and the quality of spatially differentiated sinks (superior and inferior spikelets). Both genotypes exhibited significantly higher night respiration rates. However, only Nagina 22 compensated for the high respiration rates with an increased photosynthetic rate, resulting in a steady production of total dry matter under HNT. Nagina 22 also recorded a higher grain-filling rate, particularly at 5 and 10 d after flowering, with 1.5- and 4.0-fold increases in the translocation of <sup>14</sup>C sugars to the superior and inferior spikelets, respectively. The ratio of photosynthetic rate to respiratory rate on a leaf area basis was negatively correlated with spikelet sterility, resulting in a higher filled spikelet number and grain weight per plant, particularly for inferior grains in Nagina 22. Grain quality parameters such as head rice recovery, high-density grains, and gelatinization temperature were maintained in Nagina 22. An increase in the rheological properties of rice flour starch in Nagina 22 under HNT indicated the stability of starch and its ability to reorganize during the cooling process of product formation. Thus, our study showed that sink adjustments between superior and inferior spikelets favored the growth of inferior spikelets, which helped to offset the reduction in grain weight under HNT in the tolerant genotype Nagina 22.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Semi-Dried Brown Rice Noodle Quality via Mixed Fermentation of Lactobacillus and Yeast 通过乳酸菌和酵母的混合发酵提高半干糙米面的质量
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.06.005
{"title":"Improving Semi-Dried Brown Rice Noodle Quality via Mixed Fermentation of Lactobacillus and Yeast","authors":"","doi":"10.1016/j.rsci.2024.06.005","DOIUrl":"10.1016/j.rsci.2024.06.005","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RISE Method Based on Rare Allele Infusion and Sanger Sequencing Estimation: A Simple, Cheap, and Efficient Method for Detecting Transgene Copy Number in Rice 基于稀有等位基因注入和 Sanger 测序估算的 RISE 方法:一种检测水稻转基因拷贝数的简单、廉价而高效的方法
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.05.001
{"title":"RISE Method Based on Rare Allele Infusion and Sanger Sequencing Estimation: A Simple, Cheap, and Efficient Method for Detecting Transgene Copy Number in Rice","authors":"","doi":"10.1016/j.rsci.2024.05.001","DOIUrl":"10.1016/j.rsci.2024.05.001","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141395974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rice Cultivation under Film Mulching Can Improve Soil Environment and Be Beneficial for Rice Production in China 薄膜覆盖栽培水稻可改善土壤环境,有利于中国水稻生产
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.06.009
{"title":"Rice Cultivation under Film Mulching Can Improve Soil Environment and Be Beneficial for Rice Production in China","authors":"","doi":"10.1016/j.rsci.2024.06.009","DOIUrl":"10.1016/j.rsci.2024.06.009","url":null,"abstract":"<div><div>Rice cultivation under film mulching is an integrated management technology that can conserve water, increase soil temperature, improve yield, and enhance water and nitrogen use efficiencies. Despite these advantages, the system does have its drawbacks, such as soil organic matter reduction and microplastic pollution, which impede the widespread adoption of film mulching cultivation in China. Nonetheless, the advent of degradable film, controlled-release fertilizer, organic fertilizer, and film mulching machinery is promoting the development of rice film mulching cultivation. This review outlines the impact of rice cultivation under film mulching on soil moisture, soil temperature, soil fertility, greenhouse gas emissions, weed control, and disease and pest management. It also elucidates the mechanism of changes in rice growth, yield and quality, water use efficiency, and nitrogen use efficiency. This paper incorporates a review of published research articles and discusses some uncertainties and shortcomings associated with rice cultivation under film mulching. Consequently, prospective research directions for the technology of rice film mulching cultivation are outlined, and recommendations for future research into rice cultivation under film mulching are proposed.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bulked Segregant RNA-Seq Analysis of Pollinated Pistils Reveals Genes Influencing Spikelet Fertility in Rice 对授粉雌蕊的大块分离RNA-Seq分析揭示了影响水稻小穗生育力的基因
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.06.001
{"title":"Bulked Segregant RNA-Seq Analysis of Pollinated Pistils Reveals Genes Influencing Spikelet Fertility in Rice","authors":"","doi":"10.1016/j.rsci.2024.06.001","DOIUrl":"10.1016/j.rsci.2024.06.001","url":null,"abstract":"<div><div>Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F<sub>5:6</sub> generation plants derived from inter-subspecific crosses (Nipponbare × KDML105) with low (LS) and high seed-setting rates (HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4‒5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes (DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS- specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as <em>OsPME35</em> and <em>OsPLL9</em>, showed similar expression patterns, with higher levels in HS pistils pre-pollination. <em>Os02g0467600</em>, similar to cinnamate 4-hydroxylase gene (<em>CYP73</em>), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that <em>OsPME35</em>, <em>OsPLL9</em>, and <em>Os02g0467600</em> contribute to prezygotic isolation by potentially modifying the stigma cell wall (<em>OsPME35</em> and <em>OsPLL9</em>) and controlling later processes such as pollen-stigma adhesion (<em>Os02g0467600</em>) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochar Decreases Soil Cadmium (Cd) Availability and Regulates Expression Levels of Cd Uptake/Transport-Related Genes to Reduce Cd Translocation in Rice 生物炭降低土壤中镉的供应量并调节镉吸收/转运相关基因的表达水平,从而减少水稻中镉的转运
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.04.004
{"title":"Biochar Decreases Soil Cadmium (Cd) Availability and Regulates Expression Levels of Cd Uptake/Transport-Related Genes to Reduce Cd Translocation in Rice","authors":"","doi":"10.1016/j.rsci.2024.04.004","DOIUrl":"10.1016/j.rsci.2024.04.004","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140773589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next Generation Nutrition: Genomic and Molecular Breeding Innovations for Iron and Zinc Biofortification in Rice 下一代营养:水稻铁锌生物强化的基因组与分子育种创新
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.04.008
{"title":"Next Generation Nutrition: Genomic and Molecular Breeding Innovations for Iron and Zinc Biofortification in Rice","authors":"","doi":"10.1016/j.rsci.2024.04.008","DOIUrl":"10.1016/j.rsci.2024.04.008","url":null,"abstract":"<div><div>Global efforts to address malnutrition and hidden hunger, particularly prevalent in low- and middle-income countries, have intensified, with a focus on enhancing the nutritional content of staple crops like rice. Despite serving as a staple for over half of the world’s population, rice falls short in meeting daily nutritional requirements, especially for iron (Fe) and zinc (Zn). Genetic resources, such as wild rice species and specific rice varieties, offer promising avenues for enhancing Fe and Zn content. Additionally, molecular breeding approaches have identified key genes and loci associated with Fe and Zn accumulation in rice grains. This review explores the genetic resources and molecular mechanisms underlying Fe and Zn accumulation in rice grains. The functional genomics involved in Fe uptake, transport, and distribution in rice plants have revealed key genes such as <em>OsFRO1</em>, <em>OsIRT1</em>, and <em>OsNAS3</em>. Similarly, genes associated with Zn uptake and translocation, including <em>OsZIP11</em> and <em>OsNRAMP1</em>, have been identified. Transgenic approaches, leveraging transporter gene families and genome editing technologies, offer promising avenues for enhancing Fe and Zn content in rice grains. Moreover, strategies for reducing phytic acid (PA) content, a known inhibitor of mineral bioavailability, have been explored, including the identification of low-PA mutants and natural variants. The integration of genomic information, including whole-genome resequencing and pan-genome analyses, provides valuable insights into the genetic basis of micronutrient traits and facilitates targeted breeding efforts. Functional genomics studies have elucidated the molecular mechanisms underlying Fe uptake and translocation in rice. Furthermore, transgenic and genome editing techniques have shown promise in enhancing Fe and Zn content in rice grains through the manipulation of key transporter genes. Overall, the integration of multi-omics approaches holds significant promise for addressing global malnutrition and hidden hunger by enhancing the nutritional quality of rice, thereby contributing to improved food and nutritional security worldwide.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141033035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Key Phenological Dates of Multiple Rice Accessions Using Unmanned Aerial Vehicle-Based Plant Height Dynamics for Breeding 利用基于无人机的植株高度动态估算多个水稻品种的关键物候期,促进育种工作
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.04.007
{"title":"Estimating Key Phenological Dates of Multiple Rice Accessions Using Unmanned Aerial Vehicle-Based Plant Height Dynamics for Breeding","authors":"","doi":"10.1016/j.rsci.2024.04.007","DOIUrl":"10.1016/j.rsci.2024.04.007","url":null,"abstract":"<div><div>Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height (PH) dynamics are valuable for estimating phenological dates. However, research on estimating the key phenological dates of multiple rice accessions based on PH dynamics has been limited. In 2022, field traits were collected using unmanned aerial vehicle (UAV)-based images across 435 plots, including 364 rice varieties. PH, dates of initial heading (IH) and full heading (FH), and panicle initiation (PI), and growth period after transplanting (GPAT) were collected during the rice growth stage. PHs were extracted using a digital surface model (DSM) and fitted using Fourier and logistic models. Machine learning algorithms, including multiple linear regression, random forest (RF), support vector regression, least absolute shrinkage and selection operator, and elastic net regression, were employed to estimate phenological dates. Results indicated that the optimal percentile of the DSM for extracting rice PH was the 95th (<em>R</em><sup>2</sup> = 0.934, RMSE = 0.056 m). The Fourier model provided a better fit for PH dynamics compared with the logistic models. Additionally, curve features (CF) and GPAT were significantly associated with PI, IH, and FH. The combination of CF and GPAT outperformed the use of CF alone, with RF demonstrating the best performance among the algorithms. Specifically, the combination of CF extracted from the logistic models, GPAT, and RF yielded the best performance for estimating PI (<em>R</em><sup>2</sup> = 0.834, RMSE = 4.344 d), IH (<em>R</em><sup>2</sup> = 0.877, RMSE = 2.721 d), and FH (<em>R</em><sup>2</sup> = 0.883, RMSE = 2.694 d). Overall, UAV-based rice PH dynamics combined with machine learning effectively estimated the key phenological dates of multiple rice accessions, providing a novel approach for investigating key phenological dates in breeding work.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141050138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Machine Vision-Based Algorithm for Counting and Discriminating Filled and Unfilled Paddy Rice in Overlapping Mode 开发一种基于机器视觉的算法,用于在重叠模式下计数和区分饱满和不饱满的稻穗
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.04.001
{"title":"Development of Machine Vision-Based Algorithm for Counting and Discriminating Filled and Unfilled Paddy Rice in Overlapping Mode","authors":"","doi":"10.1016/j.rsci.2024.04.001","DOIUrl":"10.1016/j.rsci.2024.04.001","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140756556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Understanding Cadmium Stress and Breeding of Cadmium-Tolerant Crops 认识镉胁迫和培育耐镉作物的进展
IF 5.6 2区 农林科学
Rice Science Pub Date : 2024-09-01 DOI: 10.1016/j.rsci.2024.06.006
{"title":"Advances in Understanding Cadmium Stress and Breeding of Cadmium-Tolerant Crops","authors":"","doi":"10.1016/j.rsci.2024.06.006","DOIUrl":"10.1016/j.rsci.2024.06.006","url":null,"abstract":"<div><div>Cadmium (Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信