Rice Science最新文献

筛选
英文 中文
A β-Carotene Ketolase Gene NfcrtO from Subaerial Cyanobacteria Confers Drought Tolerance in Rice 地下蓝藻中的β-胡萝卜素酮酶基因NfcrtO赋予水稻耐旱性
IF 4.8 2区 农林科学
Rice Science Pub Date : 2024-01-01 DOI: 10.1016/j.rsci.2023.10.002
Gao Ningning , Ye Shuifeng , Zhang Yu , Zhou Liguo , Ma Xiaosong , Yu Hanxi , Li Tianfei , Han Jing , Liu Zaochang , Luo Lijun
{"title":"A β-Carotene Ketolase Gene NfcrtO from Subaerial Cyanobacteria Confers Drought Tolerance in Rice","authors":"Gao Ningning ,&nbsp;Ye Shuifeng ,&nbsp;Zhang Yu ,&nbsp;Zhou Liguo ,&nbsp;Ma Xiaosong ,&nbsp;Yu Hanxi ,&nbsp;Li Tianfei ,&nbsp;Han Jing ,&nbsp;Liu Zaochang ,&nbsp;Luo Lijun","doi":"10.1016/j.rsci.2023.10.002","DOIUrl":"10.1016/j.rsci.2023.10.002","url":null,"abstract":"<div><p><em>Nostoc flagelliforme</em> is a terrestrial cyanobacterium that can resist many types of stressors, including drought, ultraviolet radiation, and extreme temperatures. In this study, we identified the drought tolerance gene <em>NfcrtO</em>, which encodes a β-carotene ketolase, through screening the transcriptome of <em>N</em>. <em>flagelliforme</em> under water loss stress. Prokaryotic expression of <em>NfcrtO</em> under 0.6 mol/L sorbitol or under 0.3 mol/L NaCl stress significantly increased the growth rate of <em>Escherichia coli</em>. When <em>NfcrtO</em> was heterologously expressed in rice, the seedling height and root length of <em>NfcrtO</em>-overexpressing rice plants were significantly higher than those of the wild type (WT) plants grown on ½ Murashige and Skoog solid medium with 120 mmol/L mannitol at the seedling stage. Transcriptome analysis revealed that <em>NfcrtO</em> was involved in osmotic stress, antioxidant, and other stress-related pathways. Additionally, the survival rate of the <em>NfcrtO</em>-overexpression lines was significantly higher than that of the WT line under both hydroponic stress (24% PEG and 100 mmol/L H<sub>2</sub>O<sub>2</sub>) and soil drought treatment at the seedling stage. Physiological traits, including the activity levels of superoxide dismutase, peroxidase, catalase, total antioxidant capacity, and the contents of proline, trehalose, and soluble sugar, were significantly improved in the <em>NfcrtO</em>-overexpression lines relative to those in the WT line under 20% PEG treatment. Furthermore, when water was withheld at the booting stage, the grain yield per plant of <em>NfcrtO</em>-overexpression lines was significantly higher than that of the WT line. Yeast two-hybrid analysis identified interactions between NfcrtO and Dna J protein, E3 ubiquitin-protein ligase, and pyrophosphate-energized vacuolar membrane proton pump. Thus, heterologous expression of <em>NfcrtO</em> in rice could significantly improve the tolerance of rice to osmotic stress, potentially facilitating the development of new rice varieties.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"31 1","pages":"Pages 62-76"},"PeriodicalIF":4.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823001129/pdfft?md5=77cd321a2f26fc24412fe332af10edd3&pid=1-s2.0-S1672630823001129-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135670228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Secretory Transporters and Biosynthetic Precursors of Biological Nitrification Inhibitor 1,9-Decanediol in Rice as Revealed by Transcriptome and Metabolome Analyses 转录组和代谢组分析揭示的水稻中生物硝化抑制剂 1,9-癸二醇的潜在分泌转运体和生物合成前体
IF 4.8 2区 农林科学
Rice Science Pub Date : 2024-01-01 DOI: 10.1016/j.rsci.2023.09.002
Di Dongwei , Ma Mingkun , Zhang Xiaoyang , Lu Yufang , Herbert J. Kronzucker , Shi Weiming
{"title":"Potential Secretory Transporters and Biosynthetic Precursors of Biological Nitrification Inhibitor 1,9-Decanediol in Rice as Revealed by Transcriptome and Metabolome Analyses","authors":"Di Dongwei ,&nbsp;Ma Mingkun ,&nbsp;Zhang Xiaoyang ,&nbsp;Lu Yufang ,&nbsp;Herbert J. Kronzucker ,&nbsp;Shi Weiming","doi":"10.1016/j.rsci.2023.09.002","DOIUrl":"10.1016/j.rsci.2023.09.002","url":null,"abstract":"<div><p>Biological nitrification inhibitors (BNIs) are released from plant roots and inhibit the nitrification activity of microorganisms in soils, reducing NO<sub>3</sub><sup>‒</sup> leaching and N<sub>2</sub>O emissions, and increasing nitrogen- use efficiency (NUE). Several recent studies have focused on the identification of new BNIs, yet little is known about the genetic loci that govern their biosynthesis and secretion. We applied a combined transcriptomic and metabolomic analysis to investigate possible biosynthetic pathways and transporters involved in the biosynthesis and release of BNI 1,9-decanediol (1,9-D), which was previously identified in rice root exudates. Our results linked four fatty acids, icosapentaenoic acid, linoleate, norlinolenic acid, and polyhydroxy-α,ω-divarboxylic acid, with 1,9-D biosynthesis and three transporter families, namely the ATP-binding cassette protein family, the multidrug and toxic compound extrusion family, and the major facilitator superfamily, with 1,9-D release from roots into the soil medium. Our finding provided candidates for further work on the genes implicated in the biosynthesis and secretion of 1,9-D and pinpoint genetic loci for crop breeding to improve NUE by enhancing 1,9-D secretion, with the potential to reduce NO<sub>3</sub><sup>‒</sup> leaching and N<sub>2</sub>O emissions from agricultural soils.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"31 1","pages":"Pages 87-102"},"PeriodicalIF":4.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823000975/pdfft?md5=daa202d8baf157d2309d7fa45c0b9ba3&pid=1-s2.0-S1672630823000975-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134917288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OsbZIP01 Affects Plant Growth and Development by Regulating OsSD1 in Rice OsbZIP01 通过调控水稻中的 OsSD1 影响植物的生长和发育
IF 4.8 2区 农林科学
Rice Science Pub Date : 2024-01-01 DOI: 10.1016/j.rsci.2023.11.007
Dong Xinli , Zhou Yang , Zhang Yaqi , Rong Fuxi , Du Jiahong , Hong Zheyuan , H.U. Peisong , Lü Yusong
{"title":"OsbZIP01 Affects Plant Growth and Development by Regulating OsSD1 in Rice","authors":"Dong Xinli ,&nbsp;Zhou Yang ,&nbsp;Zhang Yaqi ,&nbsp;Rong Fuxi ,&nbsp;Du Jiahong ,&nbsp;Hong Zheyuan ,&nbsp;H.U. Peisong ,&nbsp;Lü Yusong","doi":"10.1016/j.rsci.2023.11.007","DOIUrl":"10.1016/j.rsci.2023.11.007","url":null,"abstract":"<div><p>As the ‘Green Revolution’ gene, <em>SD1</em> (encoding GA20ox2), has been widely applied to improve yield in rice breeding. However, research on its transcriptional regulation is limited. Here, we identified a transcription factor OsbZIP01, which can suppress the expression of <em>SD1</em> and regulate gibberellin (GA) biosynthesis in rice. Knockout mutants of <em>OsbZIP01</em> exhibited increased plant height, while the over- expression lines showed a semi-dwarf phenotype and diminished germination rate. Furthermore, the semi-dwarf phenotype of <em>OE</em>-<em>bZIP01</em>, was caused by the reduced internode length, which was accompanied by a thin stem width. The predominant expression of <em>OsbZIP01</em> was observed in leaves and sheaths. OsbZIP01 protein was localized in the nucleus and showed transcriptional repression activity. In addition, OsbZIP01 could directly bind to the promoter of the <em>OsSD1</em> gene, and inhibit its transcription. The semi-dwarf phenotype of <em>OE</em>-<em>bZIP01</em> could be rescued by exogenous GA<sub>3</sub>. Meanwhile, the <em>bzip01 sd1</em> double mutant showed a shorter shoot length compared with the wild type, indicating that OsbZIP01 regulated plant growth mainly through the GA biosynthesis pathway. Collectively, OsbZIP01 negatively regulates GA biosynthesis by restraining <em>SD1</em> transcription, thereby affecting plant growth and development.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"31 1","pages":"Pages 77-86"},"PeriodicalIF":4.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823001178/pdfft?md5=73cf197bb155cc35e1215f34db8fc2ed&pid=1-s2.0-S1672630823001178-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138561946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invasive Fungal Rhinosinusitis Associated With Schizophyllum commune in an Immunocompetent Patient. 侵袭性真菌性鼻窦炎与免疫功能正常患者的裂叶菌相关。
IF 2.9 2区 农林科学
Rice Science Pub Date : 2023-12-01 Epub Date: 2022-02-25 DOI: 10.1097/WNO.0000000000001518
Siyin Liu, Ali Yagan
{"title":"Invasive Fungal Rhinosinusitis Associated With Schizophyllum commune in an Immunocompetent Patient.","authors":"Siyin Liu, Ali Yagan","doi":"10.1097/WNO.0000000000001518","DOIUrl":"10.1097/WNO.0000000000001518","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 5","pages":"e227-e229"},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72543760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Sources of Combined Resistance Against Rice Root- Knot Nematode and Brown Spot Disease in Oryza rufipogon 水稻根结线虫和褐斑病联合抗性新来源的研究
IF 4.8 2区 农林科学
Rice Science Pub Date : 2023-11-01 DOI: 10.1016/j.rsci.2023.08.001
Anupam Sekhon , Narpinderjeet Kaur Dhillon , Dharminder Bhatia , Jagjeet Singh Lore , Harwinder Singh Buttar
{"title":"Novel Sources of Combined Resistance Against Rice Root- Knot Nematode and Brown Spot Disease in Oryza rufipogon","authors":"Anupam Sekhon ,&nbsp;Narpinderjeet Kaur Dhillon ,&nbsp;Dharminder Bhatia ,&nbsp;Jagjeet Singh Lore ,&nbsp;Harwinder Singh Buttar","doi":"10.1016/j.rsci.2023.08.001","DOIUrl":"https://doi.org/10.1016/j.rsci.2023.08.001","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 6","pages":"Pages 504-508"},"PeriodicalIF":4.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823000793/pdfft?md5=ca4fcb5ed8ad59e91fccb2cd74bb620c&pid=1-s2.0-S1672630823000793-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138412793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Application of Prime Editing in Plants 植物引体编辑技术的发展与应用
IF 4.8 2区 农林科学
Rice Science Pub Date : 2023-11-01 DOI: 10.1016/j.rsci.2023.07.005
Liu Tingting , Zou Jinpeng , Yang Xi , Wang Kejian , Rao Yuchun , Wang Chun
{"title":"Development and Application of Prime Editing in Plants","authors":"Liu Tingting ,&nbsp;Zou Jinpeng ,&nbsp;Yang Xi ,&nbsp;Wang Kejian ,&nbsp;Rao Yuchun ,&nbsp;Wang Chun","doi":"10.1016/j.rsci.2023.07.005","DOIUrl":"https://doi.org/10.1016/j.rsci.2023.07.005","url":null,"abstract":"<div><p>Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targeted genomic modifications. Moreover, the prime editing system, derived from the CRISPR/Cas system, has opened the door for even more precise genome editing. Prime editing has the capability to facilitate all 12 types of base-to-base conversions, as well as desired insertions or deletions of fragments, without inducing double-strand breaks and requiring donor DNA templet. In a short time, prime editing has been rapidly verified as functional in various plants, and can be used in plant genome functional analysis as well as precision breeding of crops. In this review, we summarize the emergence and development of prime editing, highlight recent advances in improving its efficiency in plants, introduce the current applications of prime editing in plants, and look forward to future prospects for utilizing prime editing in genetic improvement and precision molecular breeding.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 6","pages":"Pages 509-522"},"PeriodicalIF":4.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823000951/pdfft?md5=a8f8efd5b441e0df37967b206289d92c&pid=1-s2.0-S1672630823000951-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138412790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel QTLs from Wild Rice Oryza longistaminata Confer Strong Tolerance to High Temperature at Seedling Stage 野生稻水稻幼苗期高温耐受性较强的新qtl
IF 4.8 2区 农林科学
Rice Science Pub Date : 2023-11-01 DOI: 10.1016/j.rsci.2023.07.004
Fan Fengfeng , Cai Meng , Luo Xiong , Liu Manman , Yuan Huanran , Cheng Mingxing , Ayaz Ahmad , Li Nengwu , Li Shaoqing
{"title":"Novel QTLs from Wild Rice Oryza longistaminata Confer Strong Tolerance to High Temperature at Seedling Stage","authors":"Fan Fengfeng ,&nbsp;Cai Meng ,&nbsp;Luo Xiong ,&nbsp;Liu Manman ,&nbsp;Yuan Huanran ,&nbsp;Cheng Mingxing ,&nbsp;Ayaz Ahmad ,&nbsp;Li Nengwu ,&nbsp;Li Shaoqing","doi":"10.1016/j.rsci.2023.07.004","DOIUrl":"https://doi.org/10.1016/j.rsci.2023.07.004","url":null,"abstract":"<div><p>Global warming poses a threat to rice production. Breeding heat-tolerant rice is an effective and economical approach to address this challenge. African rice is a valuable genetic resource for developing heat-tolerant crops due to its intricate mechanism for adapting to high temperatures. <em>Oryza longistaminata</em>, a widely distributed wild rice species in Africa, may harbor an even richer gene pool for heat tolerance, which remains untapped. In this study, we identified three heat tolerance QTLs from <em>O</em>. <em>longistaminata</em> at the seedling stage, including novel heat tolerance loci <em>qTT4</em> and <em>qTT5</em>. Our findings demonstrated that the <em>O</em>. <em>longistaminata</em> alleles for these two QTLs can enhance the heat tolerance of rice seedlings. Remarkably, <em>qTT5</em> was mapped to a region spanning approximately 287.2 kb, which contains 46 expressing genes. Through the analysis of Gene Ontology and expression differences under heat induction, we identified four candidate genes. Our results lay the foundation for discovering heat tolerance genes underlying <em>O</em>. <em>longistaminata</em> and developing new genetic resources for heat-tolerant rice breeding.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 6","pages":"Pages 577-586"},"PeriodicalIF":4.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823000938/pdfft?md5=2ee70e03752b0f73beb1484d38c2443c&pid=1-s2.0-S1672630823000938-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138412798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorus Starvation Tolerance in Rice Through Combined Physiological, Biochemical, and Proteome Analyses 通过生理、生化和蛋白质组学分析水稻的耐磷性
IF 4.8 2区 农林科学
Rice Science Pub Date : 2023-11-01 DOI: 10.1016/j.rsci.2023.04.007
V. Prathap , Suresh Kumar , Nand Lal Meena , Chirag Maheshwari , Monika Dalal , Aruna Tyagi
{"title":"Phosphorus Starvation Tolerance in Rice Through Combined Physiological, Biochemical, and Proteome Analyses","authors":"V. Prathap ,&nbsp;Suresh Kumar ,&nbsp;Nand Lal Meena ,&nbsp;Chirag Maheshwari ,&nbsp;Monika Dalal ,&nbsp;Aruna Tyagi","doi":"10.1016/j.rsci.2023.04.007","DOIUrl":"https://doi.org/10.1016/j.rsci.2023.04.007","url":null,"abstract":"<div><p>Phosphorus (P) deficiency limits the growth, development, and productivity of rice. To better understand the underlying mechanisms in P-deficiency tolerance and the role of <em>Pup1</em> QTL in enhancing P use efficiency (PUE) for the development of P-efficient rice cultivars, a pair of contrasting rice genotypes (Pusa-44 and NIL-23) was applied to investigate the morpho-physio-biochemical and proteomic variation under P-starvation stress. The rice genotypes were grown hydroponically in a PusaRich medium with adequate P (16 mg/kg, +P) or without P (0 mg/kg, -P) for 30 d. P-starvation manifested a significant reductions in root and shoot biomass, shoot length, leaf area, total chlorophyll, and P, nitrogen and starch contents, as well as protein kinase activity. The stress increased root-to-shoot biomass ratio, root length, sucrose content, and acid phosphatase activity, particularly in the P-tolerant genotype (NIL-23). Comparative proteome analysis revealed several P metabolism-associated proteins (including OsCDPKs, OsMAPKs, OsCPKs, OsLecRK2, and OsSAPks) to be expressed in the shoot of NIL-23, indicating that multiple protein kinases were involved in P-starvation/deficiency tolerance. Moreover, the up-regulated expression of OsrbcL, OsABCG32, OsSUS5, OsPolI-like B, and ClpC2 proteins in the shoot, and OsACA9, OsACA8, OsSPS2F, OsPP2C15, and OsBiP3 in the root of NIL-23, indicated their role in P-starvation stress control through the <em>Pup1</em> QTL. Thus, our findings indicated that -P stress-responsive proteins, in conjunction with morpho-physio-biochemical modulations, improved PUE and made NIL-23 a P-deficiency tolerant genotype due to the introgression of the <em>Pup1</em> QTL in the Pusa-44 background.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 6","pages":"Pages 613-631"},"PeriodicalIF":4.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823000872/pdfft?md5=f3f49a515cc2a04af0d7a2b7ed7ff279&pid=1-s2.0-S1672630823000872-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138430539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Improvement of Nutritional Content in Rice Grains by Precise Base Editing of OsROS1 利用OsROS1基因的精准碱基编辑高效提高水稻籽粒营养成分
IF 4.8 2区 农林科学
Rice Science Pub Date : 2023-11-01 DOI: 10.1016/j.rsci.2023.06.002
Xu Yang , Wang Fangquan , Li Wenqi , Wang Jun , Tao Yajun , Fan Fangjun , Chen Zhihui , Jiang Yanjie , Zhu Jianping , Li Xia , Zhu Qianhao , Yang Jie
{"title":"Efficient Improvement of Nutritional Content in Rice Grains by Precise Base Editing of OsROS1","authors":"Xu Yang ,&nbsp;Wang Fangquan ,&nbsp;Li Wenqi ,&nbsp;Wang Jun ,&nbsp;Tao Yajun ,&nbsp;Fan Fangjun ,&nbsp;Chen Zhihui ,&nbsp;Jiang Yanjie ,&nbsp;Zhu Jianping ,&nbsp;Li Xia ,&nbsp;Zhu Qianhao ,&nbsp;Yang Jie","doi":"10.1016/j.rsci.2023.06.002","DOIUrl":"https://doi.org/10.1016/j.rsci.2023.06.002","url":null,"abstract":"","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 6","pages":"Pages 499-503"},"PeriodicalIF":4.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167263082300080X/pdfft?md5=4b4027b1e39edd0b57435d100030896d&pid=1-s2.0-S167263082300080X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138412792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-Wide Dissection of Quan 9311A Breeding Process and Application Advantages 全9311A的全基因组解剖及育种过程及应用优势
IF 4.8 2区 农林科学
Rice Science Pub Date : 2023-11-01 DOI: 10.1016/j.rsci.2023.06.004
Li Qianlong , Feng Qi , Wang Heqin , Kang Yunhai , Zhang Conghe , Du Ming , Zhang Yunhu , Wang Hui , Chen Jinjie , Han Bin , Fang Yu , Wang Ahong
{"title":"Genome-Wide Dissection of Quan 9311A Breeding Process and Application Advantages","authors":"Li Qianlong ,&nbsp;Feng Qi ,&nbsp;Wang Heqin ,&nbsp;Kang Yunhai ,&nbsp;Zhang Conghe ,&nbsp;Du Ming ,&nbsp;Zhang Yunhu ,&nbsp;Wang Hui ,&nbsp;Chen Jinjie ,&nbsp;Han Bin ,&nbsp;Fang Yu ,&nbsp;Wang Ahong","doi":"10.1016/j.rsci.2023.06.004","DOIUrl":"https://doi.org/10.1016/j.rsci.2023.06.004","url":null,"abstract":"<div><p>Germplasm resource innovation is a crucial factor for cultivar development, particularly within the context of hybrid rice breeding based on the three-line system. Quan 9311A, a cytoplasmic male sterile (CMS) line, has been successfully cultivated using rice restoration materials and extensively employed as a female parent in hybrid breeding program in China. This line was developed by crossing the CMS line Zhong 9A with a two-line restorer line 93-11, with the intention of eliminating the restoring ability of 93-11 while retaining the sterility gene <em>WA352c</em> from Zhong 9A. Quan 9311A effectively amalgamates the most favorable agronomic traits from both parental lines. In this study, the relationship between phenotypic characteristics and the known functional genes of Quan 9311A were analyzed using the rice genome navigation technology based on whole-genome sequencing. The findings revealed that Quan 9311A harbors multiple superior alleles from both 93-11 and Zhong 9A, providing exceptional agronomic traits that are unavailable in earlier CMS lines. Despite the removal of the fertility restorer gene <em>Rf3</em> from 93-11, numerous chromosomal segments from 93-11 persist in the Quan 9311A genome. Furthermore, the hybrid rice Quanyousimiao (QYSM) and the restorer line Wushansimiao (WSSM) were used as examples to illustrate the important role of Quan 9311A as the female parent in heterosis. It was found that QYSM carries a great number of superior alleles, which accounts for its high grain yield and wide adaptability. These insights not only advanced the utilization of hybrid rice pairing groups but also provided guidance for future breeding endeavors. The study introduced innovative concepts to further integrate genomics with traditional breeding techniques. Ultimately, Quan 9311A signified a significant milestone in rice breeding technology, opening up novel avenues for hybrid rice development.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 6","pages":"Pages 552-566"},"PeriodicalIF":4.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823000860/pdfft?md5=3e25784250673b458af4eb66459bf19d&pid=1-s2.0-S1672630823000860-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138412796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信