通过生理、生化和蛋白质组学分析水稻的耐磷性

IF 5.6 2区 农林科学 Q1 AGRONOMY
V. Prathap , Suresh Kumar , Nand Lal Meena , Chirag Maheshwari , Monika Dalal , Aruna Tyagi
{"title":"通过生理、生化和蛋白质组学分析水稻的耐磷性","authors":"V. Prathap ,&nbsp;Suresh Kumar ,&nbsp;Nand Lal Meena ,&nbsp;Chirag Maheshwari ,&nbsp;Monika Dalal ,&nbsp;Aruna Tyagi","doi":"10.1016/j.rsci.2023.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphorus (P) deficiency limits the growth, development, and productivity of rice. To better understand the underlying mechanisms in P-deficiency tolerance and the role of <em>Pup1</em> QTL in enhancing P use efficiency (PUE) for the development of P-efficient rice cultivars, a pair of contrasting rice genotypes (Pusa-44 and NIL-23) was applied to investigate the morpho-physio-biochemical and proteomic variation under P-starvation stress. The rice genotypes were grown hydroponically in a PusaRich medium with adequate P (16 mg/kg, +P) or without P (0 mg/kg, -P) for 30 d. P-starvation manifested a significant reductions in root and shoot biomass, shoot length, leaf area, total chlorophyll, and P, nitrogen and starch contents, as well as protein kinase activity. The stress increased root-to-shoot biomass ratio, root length, sucrose content, and acid phosphatase activity, particularly in the P-tolerant genotype (NIL-23). Comparative proteome analysis revealed several P metabolism-associated proteins (including OsCDPKs, OsMAPKs, OsCPKs, OsLecRK2, and OsSAPks) to be expressed in the shoot of NIL-23, indicating that multiple protein kinases were involved in P-starvation/deficiency tolerance. Moreover, the up-regulated expression of OsrbcL, OsABCG32, OsSUS5, OsPolI-like B, and ClpC2 proteins in the shoot, and OsACA9, OsACA8, OsSPS2F, OsPP2C15, and OsBiP3 in the root of NIL-23, indicated their role in P-starvation stress control through the <em>Pup1</em> QTL. Thus, our findings indicated that -P stress-responsive proteins, in conjunction with morpho-physio-biochemical modulations, improved PUE and made NIL-23 a P-deficiency tolerant genotype due to the introgression of the <em>Pup1</em> QTL in the Pusa-44 background.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823000872/pdfft?md5=f3f49a515cc2a04af0d7a2b7ed7ff279&pid=1-s2.0-S1672630823000872-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phosphorus Starvation Tolerance in Rice Through Combined Physiological, Biochemical, and Proteome Analyses\",\"authors\":\"V. Prathap ,&nbsp;Suresh Kumar ,&nbsp;Nand Lal Meena ,&nbsp;Chirag Maheshwari ,&nbsp;Monika Dalal ,&nbsp;Aruna Tyagi\",\"doi\":\"10.1016/j.rsci.2023.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phosphorus (P) deficiency limits the growth, development, and productivity of rice. To better understand the underlying mechanisms in P-deficiency tolerance and the role of <em>Pup1</em> QTL in enhancing P use efficiency (PUE) for the development of P-efficient rice cultivars, a pair of contrasting rice genotypes (Pusa-44 and NIL-23) was applied to investigate the morpho-physio-biochemical and proteomic variation under P-starvation stress. The rice genotypes were grown hydroponically in a PusaRich medium with adequate P (16 mg/kg, +P) or without P (0 mg/kg, -P) for 30 d. P-starvation manifested a significant reductions in root and shoot biomass, shoot length, leaf area, total chlorophyll, and P, nitrogen and starch contents, as well as protein kinase activity. The stress increased root-to-shoot biomass ratio, root length, sucrose content, and acid phosphatase activity, particularly in the P-tolerant genotype (NIL-23). Comparative proteome analysis revealed several P metabolism-associated proteins (including OsCDPKs, OsMAPKs, OsCPKs, OsLecRK2, and OsSAPks) to be expressed in the shoot of NIL-23, indicating that multiple protein kinases were involved in P-starvation/deficiency tolerance. Moreover, the up-regulated expression of OsrbcL, OsABCG32, OsSUS5, OsPolI-like B, and ClpC2 proteins in the shoot, and OsACA9, OsACA8, OsSPS2F, OsPP2C15, and OsBiP3 in the root of NIL-23, indicated their role in P-starvation stress control through the <em>Pup1</em> QTL. Thus, our findings indicated that -P stress-responsive proteins, in conjunction with morpho-physio-biochemical modulations, improved PUE and made NIL-23 a P-deficiency tolerant genotype due to the introgression of the <em>Pup1</em> QTL in the Pusa-44 background.</p></div>\",\"PeriodicalId\":56069,\"journal\":{\"name\":\"Rice Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1672630823000872/pdfft?md5=f3f49a515cc2a04af0d7a2b7ed7ff279&pid=1-s2.0-S1672630823000872-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672630823000872\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630823000872","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

磷(P)缺乏限制了水稻的生长发育和生产力。为了更好地了解水稻耐磷机制和Pup1 QTL在提高磷利用效率(PUE)中的作用,本研究利用一对对比水稻基因型(Pusa-44和NIL-23)研究了磷饥饿胁迫下水稻形态生理生化和蛋白质组学的变化。不同基因型水稻在富磷(pusarrich)培养基中水培30 d,缺磷(0 mg/kg, -P)或缺磷(16 mg/kg, +P)。缺磷显著降低了根和茎生物量、茎长、叶面积、总叶绿素、磷、氮和淀粉含量以及蛋白激酶活性。胁迫增加了根冠生物量比、根长、蔗糖含量和酸性磷酸酶活性,尤其是耐磷基因型(NIL-23)。比较蛋白质组学分析显示,NIL-23茎部中表达了几种磷代谢相关蛋白(包括OsCDPKs、OsMAPKs、OsCPKs、OsLecRK2和OsSAPks),表明多种蛋白激酶参与了磷饥饿/缺乏耐受。此外,NIL-23在茎部上调OsrbcL、OsABCG32、OsSUS5、OsPolI-like B和ClpC2蛋白的表达,在根部上调OsACA9、OsACA8、OsSPS2F、OsPP2C15和OsBiP3蛋白的表达,表明它们通过Pup1 QTL调控缺磷胁迫。因此,我们的研究结果表明,由于Pup1 QTL在Pusa-44背景下的渗入,p胁迫响应蛋白与形态-生理-生化调节相结合,提高了PUE,使NIL-23成为p缺乏耐受基因型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphorus Starvation Tolerance in Rice Through Combined Physiological, Biochemical, and Proteome Analyses

Phosphorus (P) deficiency limits the growth, development, and productivity of rice. To better understand the underlying mechanisms in P-deficiency tolerance and the role of Pup1 QTL in enhancing P use efficiency (PUE) for the development of P-efficient rice cultivars, a pair of contrasting rice genotypes (Pusa-44 and NIL-23) was applied to investigate the morpho-physio-biochemical and proteomic variation under P-starvation stress. The rice genotypes were grown hydroponically in a PusaRich medium with adequate P (16 mg/kg, +P) or without P (0 mg/kg, -P) for 30 d. P-starvation manifested a significant reductions in root and shoot biomass, shoot length, leaf area, total chlorophyll, and P, nitrogen and starch contents, as well as protein kinase activity. The stress increased root-to-shoot biomass ratio, root length, sucrose content, and acid phosphatase activity, particularly in the P-tolerant genotype (NIL-23). Comparative proteome analysis revealed several P metabolism-associated proteins (including OsCDPKs, OsMAPKs, OsCPKs, OsLecRK2, and OsSAPks) to be expressed in the shoot of NIL-23, indicating that multiple protein kinases were involved in P-starvation/deficiency tolerance. Moreover, the up-regulated expression of OsrbcL, OsABCG32, OsSUS5, OsPolI-like B, and ClpC2 proteins in the shoot, and OsACA9, OsACA8, OsSPS2F, OsPP2C15, and OsBiP3 in the root of NIL-23, indicated their role in P-starvation stress control through the Pup1 QTL. Thus, our findings indicated that -P stress-responsive proteins, in conjunction with morpho-physio-biochemical modulations, improved PUE and made NIL-23 a P-deficiency tolerant genotype due to the introgression of the Pup1 QTL in the Pusa-44 background.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice Science
Rice Science Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍: Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信