Mirko Salinitro , Martino Rabbia , Antony van der Ent , Marco Prati , Dennis Brueckner , Andrea Ertani , Maria Martin , Michela Schiavon
{"title":"水培硒对水稻镉、镍积累的影响","authors":"Mirko Salinitro , Martino Rabbia , Antony van der Ent , Marco Prati , Dennis Brueckner , Andrea Ertani , Maria Martin , Michela Schiavon","doi":"10.1016/j.rsci.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><div>Rice (<em>Oryza sativa</em> L.) farmers face challenges with metal accumulation in grain, with nickel (Ni) recently emerging as a concern due to its potential to exceed legal limits, alongside cadmium (Cd). Information on Ni behaviour and its interaction with Cd remains limited. Selenium (Se) is commonly used for rice biofortification and can reduce the accumulation of toxic metals in plants. Therefore, this study investigates how Ni and Cd influence mutual accumulation in rice and examines the impact of different Se forms on their interactions. Plants were grown hydroponically with various combinations of Cd (5 or 20 μmol/L), Ni (20 μmol/L), and Se (5 μmol/L) as selenate (Se<sup>6+</sup>) or selenite (Se<sup>4+</sup>) for 7 d. Plant growth, lipid peroxidation, and element accumulation were measured, and the distribution of Se and Ni in tissues was assayed using synchrotron-based μXRF 2D imaging. Cd and Ni were toxic to rice, reducing leaf and root biomass by 40%‒50% and inducing oxidative stress. However, their combined presence did not further exacerbate leaf growth reduction. Cd reduced root Ni accumulation by approximately 50% at equimolar concentrations, likely due to competitive inhibition at shared transport sites. Se promoted root growth in the presence of Ni and low Cd, suggesting an antioxidant role in mitigating metal-induced stress. However, high doses of Ni and Cd together significantly reduced Se accumulation (by 60% and 77% for Se<sup>4+</sup> in roots and Se<sup>6+</sup> in leaves, respectively) and caused severe oxidative stress in the presence of Se<sup>4+</sup>. The effectiveness of Se biofortification varied depending on the Se form: Se<sup>6+</sup> was more effective at reducing Ni accumulation, while Se<sup>4+</sup> effectively reduced Cd accumulation (by 45%‒75%) at low concentrations and Ni accumulation in the absence of Cd (by 50%). In conclusion, this study demonstrates that Se can mitigate Cd and Ni accumulation in rice. However, the co-presence of Cd and Ni may compromise Se enrichment in rice, highlighting the complexity of their interactions.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"32 4","pages":"Pages 561-574"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Hydroponically Supplied Selenium Forms on Cadmium and Nickel Accumulation in Rice\",\"authors\":\"Mirko Salinitro , Martino Rabbia , Antony van der Ent , Marco Prati , Dennis Brueckner , Andrea Ertani , Maria Martin , Michela Schiavon\",\"doi\":\"10.1016/j.rsci.2025.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rice (<em>Oryza sativa</em> L.) farmers face challenges with metal accumulation in grain, with nickel (Ni) recently emerging as a concern due to its potential to exceed legal limits, alongside cadmium (Cd). Information on Ni behaviour and its interaction with Cd remains limited. Selenium (Se) is commonly used for rice biofortification and can reduce the accumulation of toxic metals in plants. Therefore, this study investigates how Ni and Cd influence mutual accumulation in rice and examines the impact of different Se forms on their interactions. Plants were grown hydroponically with various combinations of Cd (5 or 20 μmol/L), Ni (20 μmol/L), and Se (5 μmol/L) as selenate (Se<sup>6+</sup>) or selenite (Se<sup>4+</sup>) for 7 d. Plant growth, lipid peroxidation, and element accumulation were measured, and the distribution of Se and Ni in tissues was assayed using synchrotron-based μXRF 2D imaging. Cd and Ni were toxic to rice, reducing leaf and root biomass by 40%‒50% and inducing oxidative stress. However, their combined presence did not further exacerbate leaf growth reduction. Cd reduced root Ni accumulation by approximately 50% at equimolar concentrations, likely due to competitive inhibition at shared transport sites. Se promoted root growth in the presence of Ni and low Cd, suggesting an antioxidant role in mitigating metal-induced stress. However, high doses of Ni and Cd together significantly reduced Se accumulation (by 60% and 77% for Se<sup>4+</sup> in roots and Se<sup>6+</sup> in leaves, respectively) and caused severe oxidative stress in the presence of Se<sup>4+</sup>. The effectiveness of Se biofortification varied depending on the Se form: Se<sup>6+</sup> was more effective at reducing Ni accumulation, while Se<sup>4+</sup> effectively reduced Cd accumulation (by 45%‒75%) at low concentrations and Ni accumulation in the absence of Cd (by 50%). In conclusion, this study demonstrates that Se can mitigate Cd and Ni accumulation in rice. However, the co-presence of Cd and Ni may compromise Se enrichment in rice, highlighting the complexity of their interactions.</div></div>\",\"PeriodicalId\":56069,\"journal\":{\"name\":\"Rice Science\",\"volume\":\"32 4\",\"pages\":\"Pages 561-574\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672630825000277\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630825000277","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Effect of Hydroponically Supplied Selenium Forms on Cadmium and Nickel Accumulation in Rice
Rice (Oryza sativa L.) farmers face challenges with metal accumulation in grain, with nickel (Ni) recently emerging as a concern due to its potential to exceed legal limits, alongside cadmium (Cd). Information on Ni behaviour and its interaction with Cd remains limited. Selenium (Se) is commonly used for rice biofortification and can reduce the accumulation of toxic metals in plants. Therefore, this study investigates how Ni and Cd influence mutual accumulation in rice and examines the impact of different Se forms on their interactions. Plants were grown hydroponically with various combinations of Cd (5 or 20 μmol/L), Ni (20 μmol/L), and Se (5 μmol/L) as selenate (Se6+) or selenite (Se4+) for 7 d. Plant growth, lipid peroxidation, and element accumulation were measured, and the distribution of Se and Ni in tissues was assayed using synchrotron-based μXRF 2D imaging. Cd and Ni were toxic to rice, reducing leaf and root biomass by 40%‒50% and inducing oxidative stress. However, their combined presence did not further exacerbate leaf growth reduction. Cd reduced root Ni accumulation by approximately 50% at equimolar concentrations, likely due to competitive inhibition at shared transport sites. Se promoted root growth in the presence of Ni and low Cd, suggesting an antioxidant role in mitigating metal-induced stress. However, high doses of Ni and Cd together significantly reduced Se accumulation (by 60% and 77% for Se4+ in roots and Se6+ in leaves, respectively) and caused severe oxidative stress in the presence of Se4+. The effectiveness of Se biofortification varied depending on the Se form: Se6+ was more effective at reducing Ni accumulation, while Se4+ effectively reduced Cd accumulation (by 45%‒75%) at low concentrations and Ni accumulation in the absence of Cd (by 50%). In conclusion, this study demonstrates that Se can mitigate Cd and Ni accumulation in rice. However, the co-presence of Cd and Ni may compromise Se enrichment in rice, highlighting the complexity of their interactions.
Rice ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍:
Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.