Zeng Deyong , Cui Jie , Yin Yishu , Dai Cuihong , Yu Wencheng , Zhao Haitian , Guan Shuanghong , Cheng Dayou , Sun Yeqing , Lu Weihong
{"title":"基于多组学的水稻空间诱变世代遗传机制研究","authors":"Zeng Deyong , Cui Jie , Yin Yishu , Dai Cuihong , Yu Wencheng , Zhao Haitian , Guan Shuanghong , Cheng Dayou , Sun Yeqing , Lu Weihong","doi":"10.1016/j.rsci.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>Intergenerational inheritance of stress memory plays a crucial role in plant adaptation to environmental changes, particularly in the context of spaceflight, where plants may serve as a food source for humans on long-duration missions. However, the intergenerational genetic effects of spaceflight-induced stress memory in plants remain unclear. In this study, we assessed the cross-generational genetic effects of spaceflight stress memory using the rice mutant B10, identified during the SJ-10 return satellite mission. Our results showed that the oxidative stress effects induced by spaceflight persisted until the M5 generation in rice. We found that the rice genome remained unstable post-spaceflight, leading to alterations in genome methylation levels. Additionally, we observed significant changes in the methylation levels of transposons, suggesting their involvement in the intergenerational inheritance of spaceflight-induced stress memory. Furthermore, we identified thousands of differentially expressed genes (DEGs) and differentially alternatively spliced (DAS) genes induced by spaceflight stress memory across multiple rice generations. Notably, differentially methylated cytosines were more abundant in non-expressed genes than in DEGs or DAS genes. A substantial number of DEGs and DASs related to oxidative stress were identified, primarily involved in the generation and scavenging of reactive oxygen species. This study also presented report on the response of alternative splicing events in rice to spaceflight stress. Moreover, our findings revealed that genome methylation was associated with gene expression but not with DAS. In conclusion, our study provides comprehensive insights into the intergenerational inheritance of spaceflight-induced stress in rice and may contribute to uncovering novel mechanisms of oxidative stress-induced genomic instability and epigenetic regulation in plant stress inheritance.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"32 3","pages":"Pages 400-425"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generational Genetic Mechanism of Space Mutagenesis in Rice Based on Multi-Omics\",\"authors\":\"Zeng Deyong , Cui Jie , Yin Yishu , Dai Cuihong , Yu Wencheng , Zhao Haitian , Guan Shuanghong , Cheng Dayou , Sun Yeqing , Lu Weihong\",\"doi\":\"10.1016/j.rsci.2025.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intergenerational inheritance of stress memory plays a crucial role in plant adaptation to environmental changes, particularly in the context of spaceflight, where plants may serve as a food source for humans on long-duration missions. However, the intergenerational genetic effects of spaceflight-induced stress memory in plants remain unclear. In this study, we assessed the cross-generational genetic effects of spaceflight stress memory using the rice mutant B10, identified during the SJ-10 return satellite mission. Our results showed that the oxidative stress effects induced by spaceflight persisted until the M5 generation in rice. We found that the rice genome remained unstable post-spaceflight, leading to alterations in genome methylation levels. Additionally, we observed significant changes in the methylation levels of transposons, suggesting their involvement in the intergenerational inheritance of spaceflight-induced stress memory. Furthermore, we identified thousands of differentially expressed genes (DEGs) and differentially alternatively spliced (DAS) genes induced by spaceflight stress memory across multiple rice generations. Notably, differentially methylated cytosines were more abundant in non-expressed genes than in DEGs or DAS genes. A substantial number of DEGs and DASs related to oxidative stress were identified, primarily involved in the generation and scavenging of reactive oxygen species. This study also presented report on the response of alternative splicing events in rice to spaceflight stress. Moreover, our findings revealed that genome methylation was associated with gene expression but not with DAS. In conclusion, our study provides comprehensive insights into the intergenerational inheritance of spaceflight-induced stress in rice and may contribute to uncovering novel mechanisms of oxidative stress-induced genomic instability and epigenetic regulation in plant stress inheritance.</div></div>\",\"PeriodicalId\":56069,\"journal\":{\"name\":\"Rice Science\",\"volume\":\"32 3\",\"pages\":\"Pages 400-425\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672630825000204\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630825000204","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Generational Genetic Mechanism of Space Mutagenesis in Rice Based on Multi-Omics
Intergenerational inheritance of stress memory plays a crucial role in plant adaptation to environmental changes, particularly in the context of spaceflight, where plants may serve as a food source for humans on long-duration missions. However, the intergenerational genetic effects of spaceflight-induced stress memory in plants remain unclear. In this study, we assessed the cross-generational genetic effects of spaceflight stress memory using the rice mutant B10, identified during the SJ-10 return satellite mission. Our results showed that the oxidative stress effects induced by spaceflight persisted until the M5 generation in rice. We found that the rice genome remained unstable post-spaceflight, leading to alterations in genome methylation levels. Additionally, we observed significant changes in the methylation levels of transposons, suggesting their involvement in the intergenerational inheritance of spaceflight-induced stress memory. Furthermore, we identified thousands of differentially expressed genes (DEGs) and differentially alternatively spliced (DAS) genes induced by spaceflight stress memory across multiple rice generations. Notably, differentially methylated cytosines were more abundant in non-expressed genes than in DEGs or DAS genes. A substantial number of DEGs and DASs related to oxidative stress were identified, primarily involved in the generation and scavenging of reactive oxygen species. This study also presented report on the response of alternative splicing events in rice to spaceflight stress. Moreover, our findings revealed that genome methylation was associated with gene expression but not with DAS. In conclusion, our study provides comprehensive insights into the intergenerational inheritance of spaceflight-induced stress in rice and may contribute to uncovering novel mechanisms of oxidative stress-induced genomic instability and epigenetic regulation in plant stress inheritance.
Rice ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍:
Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.