Su Chen , Feilong Ma , Jiaoyang Chen , Man Qi , Qianshu Wei , Zhihuan Tao , Bo Sun
{"title":"Function of R2R3-Type Myeloblastosis Transcription Factors in Plants","authors":"Su Chen , Feilong Ma , Jiaoyang Chen , Man Qi , Qianshu Wei , Zhihuan Tao , Bo Sun","doi":"10.1016/j.rsci.2025.01.007","DOIUrl":null,"url":null,"abstract":"<div><div>Myeloblastosis (MYB) transcription factors, particularly those in the R2R3 MYB subclass, are pivotal in plant growth, development, and environmental stress responses. As one of the largest transcription factor families in plants, the MYB family significantly regulates plant secondary metabolism, including the biosynthetic pathways for phenylpropanoids, which are crucial for stress resistance. This review presents a comprehensive overview of MYB transcription factor classification and their regulatory mechanisms in plant metabolism and stress responses. We discuss the roles of MYB transcription factors in biotic stress resistance, such as defense against pathogens and pests, and in abiotic stress tolerance, including responses to drought and salinity. Special attention is given to the interactions of R2R3 MYB with other transcription factors and co-repressors, focusing on how these synergistic or antagonistic relationships modulate physiological processes. The multifunctional role of R2R3 MYBs in stress responses positions them as promising targets for enhancing crop resilience through genetic breeding. Furthermore, this review highlights potential applications of MYB transcription factors in developing stress-resistant crops and their utility in plant resistant breeding programs.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"32 3","pages":"Pages 307-321"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630825000198","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Myeloblastosis (MYB) transcription factors, particularly those in the R2R3 MYB subclass, are pivotal in plant growth, development, and environmental stress responses. As one of the largest transcription factor families in plants, the MYB family significantly regulates plant secondary metabolism, including the biosynthetic pathways for phenylpropanoids, which are crucial for stress resistance. This review presents a comprehensive overview of MYB transcription factor classification and their regulatory mechanisms in plant metabolism and stress responses. We discuss the roles of MYB transcription factors in biotic stress resistance, such as defense against pathogens and pests, and in abiotic stress tolerance, including responses to drought and salinity. Special attention is given to the interactions of R2R3 MYB with other transcription factors and co-repressors, focusing on how these synergistic or antagonistic relationships modulate physiological processes. The multifunctional role of R2R3 MYBs in stress responses positions them as promising targets for enhancing crop resilience through genetic breeding. Furthermore, this review highlights potential applications of MYB transcription factors in developing stress-resistant crops and their utility in plant resistant breeding programs.
Rice ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍:
Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.