Olivia Surgent, Jose Guerrero-Gonzalez, Douglas C. Dean, Nagesh Adluru, Gregory R. Kirk, Steven R. Kecskemeti, Andrew L. Alexander, James J. Li, Brittany G. Travers
{"title":"Microstructural neural correlates of maximal grip strength in autistic children: the role of the cortico-cerebellar network and attention-deficit/hyperactivity disorder features","authors":"Olivia Surgent, Jose Guerrero-Gonzalez, Douglas C. Dean, Nagesh Adluru, Gregory R. Kirk, Steven R. Kecskemeti, Andrew L. Alexander, James J. Li, Brittany G. Travers","doi":"10.3389/fnint.2024.1359099","DOIUrl":"https://doi.org/10.3389/fnint.2024.1359099","url":null,"abstract":"IntroductionMaximal grip strength, a measure of how much force a person’s hand can generate when squeezing an object, may be an effective method for understanding potential neurobiological differences during motor tasks. Grip strength in autistic individuals may be of particular interest due to its unique developmental trajectory. While autism-specific differences in grip-brain relationships have been found in adult populations, it is possible that such differences in grip-brain relationships may be present at earlier ages when grip strength is behaviorally similar in autistic and non-autistic groups. Further, such neural differences may lead to the later emergence of diagnostic-group grip differences in adolescence. The present study sought to examine this possibility, while also examining if grip strength could elucidate the neuro-motor sources of phenotypic heterogeneity commonly observed within autism.MethodsUsing high resolution, multi-shell diffusion, and quantitative R1 relaxometry imaging, this study examined how variations in key sensorimotor-related white matter pathways of the proprioception input, lateral grasping, cortico-cerebellar, and corticospinal networks were associated with individual variations in grip strength in 68 autistic children and 70 non-autistic (neurotypical) children (6–11 years-old).ResultsIn both groups, results indicated that stronger grip strength was associated with higher proprioceptive input, lateral grasping, and corticospinal (but not cortico-cerebellar modification) fractional anisotropy and R1, indirect measures concordant with stronger microstructural coherence and increased myelination. Diagnostic group differences in these grip-brain relationships were not observed, but the autistic group exhibited more variability particularly in the cortico-cerebellar modification indices. An examination into the variability within the autistic group revealed that attention-deficit/hyperactivity disorder (ADHD) features moderated the relationships between grip strength and both fractional anisotropy and R1 relaxometry in the premotor-primary motor tract of the lateral grasping network and the cortico-cerebellar network tracts. Specifically, in autistic children with elevated ADHD features (60% of the autistic group) stronger grip strength was related to higher fractional anisotropy and R1 of the cerebellar modification network (stronger microstructural coherence and more myelin), whereas the opposite relationship was observed in autistic children with reduced ADHD features.DiscussionTogether, this work suggests that while the foundational elements of grip strength are similar across school-aged autistic and non-autistic children, neural mechanisms of grip strength within autistic children may additionally depend on the presence of ADHD features. Specifically, stronger, more coherent connections of the cerebellar modification network, which is thought to play a role in refining and optimizing motor commands, may lead","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"22 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandro Torres-Fortuny, Luis Miguel Aras, Jon Andoni Duñabeitia
{"title":"Assessment of aggressive behavior in Dravet syndrome: a critical look.","authors":"Alejandro Torres-Fortuny, Luis Miguel Aras, Jon Andoni Duñabeitia","doi":"10.3389/fnint.2024.1403681","DOIUrl":"10.3389/fnint.2024.1403681","url":null,"abstract":"","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"18 ","pages":"1403681"},"PeriodicalIF":3.5,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole Richard Williams, Luc Tremblay, Corene Hurt-Thaut, Jessica Brian, Julia Kowaleski, Kathrin Mertel, Sebastian Shlüter, Michael Thaut
{"title":"Auditory feedback decreases timing variability for discontinuous and continuous motor tasks in autistic adults","authors":"Nicole Richard Williams, Luc Tremblay, Corene Hurt-Thaut, Jessica Brian, Julia Kowaleski, Kathrin Mertel, Sebastian Shlüter, Michael Thaut","doi":"10.3389/fnint.2024.1379208","DOIUrl":"https://doi.org/10.3389/fnint.2024.1379208","url":null,"abstract":"IntroductionAutistic individuals demonstrate greater variability and timing error in their motor performance than neurotypical individuals, likely due at least in part to atypical cerebellar characteristics and connectivity. These motor difficulties may differentially affect discrete as opposed to continuous movements in autistic individuals. Augmented auditory feedback has the potential to aid motor timing and variability due to intact auditory-motor pathways in autism and high sensitivity in autistic individuals to auditory stimuli.MethodsThis experiment investigated whether there were differences in timing accuracy and variability in autistic adults as a function of task (discontinuous vs. continuous movements) and condition (augmented auditory feedback vs. no auditory feedback) in a synchronization-continuation paradigm. Ten autistic young adults aged 17–27 years of age completed the within-subjects study that involved drawing circles at 800 milliseconds intervals on a touch screen. In the discontinuous task, participants traced a series of discrete circles and paused at the top of each circle for at least 60 milliseconds. In the continuous task, participants traced the circles without pausing. Participants traced circles in either a non-auditory condition, or an auditory condition in which they heard a tone each time that they completed a circle drawing.ResultsParticipants had significantly better timing accuracy on the continuous timing task as opposed to the discontinuous task. Timing consistency was significantly higher for tasks performed with auditory feedback.DiscussionThis research reveals that motor difficulties in autistic individuals affect discrete timing tasks more than continuous tasks, and provides evidence that augmented auditory feedback may be able to mitigate some of the timing variability present in autistic persons’ movements. These results provide support for future investigation on the use of music-based therapies involving auditory feedback to address motor dysfunction in autistic individuals.","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"11 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raphael Lopes Olegário, Otávio Toledo Nóbrega, Einstein Francisco Camargos
{"title":"The newly discovered glymphatic system: the missing link between physical exercise and brain health?","authors":"Raphael Lopes Olegário, Otávio Toledo Nóbrega, Einstein Francisco Camargos","doi":"10.3389/fnint.2024.1349563","DOIUrl":"https://doi.org/10.3389/fnint.2024.1349563","url":null,"abstract":"Dementias are responsible for the most frequent neurodegenerative diseases and the seventh leading cause of death worldwide. As a result, there is a growing effort by the neuroscientific community to understand the physiopathology of neurodegenerative diseases, including how to alleviate the effects of the cognitive decline by means of non-pharmacological therapies (e.g., physical exercise). Studies have shown that exercise can improve aspects of brain health related to cognition. However, there still needs to be more knowledge regarding the mechanisms controlling these relationships, and a newly discovered cleansing system in the brain, named the glymphatic system, can be the missing link in this mechanism. The objective of this paper is to review recent findings regarding the potential impacts of physical exercise on the glymphatic system and its implications for the onset of neurodegenerative diseases. Additionally, considering the close interplay between exercise and sleep quality, we aim to explore how sleep patterns may intersect with exercise-induced effects on glymphatic function, further elucidating the complex relationship between lifestyle factors and brain health.","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"29 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum: The effect of acupuncture at the <i>Taiyang</i> acupoint on visual function and EEG microstates in myopia.","authors":"Kangna Su, Lihan Wang, Zhongqing Wang, Jiayao Ma, Chao Zhang, Hongsheng Bi, Jianfeng Wu","doi":"10.3389/fnint.2024.1367593","DOIUrl":"https://doi.org/10.3389/fnint.2024.1367593","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.3389/fnint.2023.1234471.].</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"18 ","pages":"1367593"},"PeriodicalIF":3.5,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140337813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo Tariciotti, Luca Mattioli, Luca Viganò, Matteo Gallo, Matteo Gambaretti, Tommaso Sciortino, Lorenzo Gay, Marco Conti Nibali, Alberto Gallotti, Gabriella Cerri, Lorenzo Bello, Marco Rossi
{"title":"Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery","authors":"Leonardo Tariciotti, Luca Mattioli, Luca Viganò, Matteo Gallo, Matteo Gambaretti, Tommaso Sciortino, Lorenzo Gay, Marco Conti Nibali, Alberto Gallotti, Gabriella Cerri, Lorenzo Bello, Marco Rossi","doi":"10.3389/fnint.2024.1324581","DOIUrl":"https://doi.org/10.3389/fnint.2024.1324581","url":null,"abstract":"IntroductionThe sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping.MethodsA systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate.ResultsWe provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection.DiscussionThe anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"73 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vojtěch Smekal, Marta Poyo Solanas, Evelyne I. C. Fraats, Beatrice de Gelder
{"title":"Differential contributions of body form, motion, and temporal information to subjective action understanding in naturalistic stimuli","authors":"Vojtěch Smekal, Marta Poyo Solanas, Evelyne I. C. Fraats, Beatrice de Gelder","doi":"10.3389/fnint.2024.1302960","DOIUrl":"https://doi.org/10.3389/fnint.2024.1302960","url":null,"abstract":"<sec><title>Introduction</title><p>We investigated the factors underlying naturalistic action recognition and understanding, as well as the errors occurring during recognition failures.</p></sec><sec><title>Methods</title><p>Participants saw full-light stimuli of ten different whole-body actions presented in three different conditions: as normal videos, as videos with the temporal order of the frames scrambled, and as single static representative frames. After each stimulus presentation participants completed one of two tasks—a forced choice task where they were given the ten potential action labels as options, or a free description task, where they could describe the action performed in each stimulus in their own words.</p></sec><sec><title>Results</title><p>While generally, a combination of form, motion, and temporal information led to the highest action understanding, for some actions form information was sufficient and adding motion and temporal information did not increase recognition accuracy. We also analyzed errors in action recognition and found primarily two different types.</p></sec><sec><title>Discussion</title><p>One type of error was on the semantic level, while the other consisted of reverting to the kinematic level of body part processing without any attribution of semantics. We elaborate on these results in the context of naturalistic action perception.</p></sec>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"73 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140105040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Motor imagery in autism: a systematic review","authors":"Emma Gowen, Eve Edmonds, Ellen Poliakoff","doi":"10.3389/fnint.2024.1335694","DOIUrl":"https://doi.org/10.3389/fnint.2024.1335694","url":null,"abstract":"IntroductionMotor Imagery (MI) is when an individual imagines performing an action without physically executing that action and is thought to involve similar neural processes used for execution of physical movement. As motor coordination difficulties are common in autistic individuals it is possible that these may affect MI ability. The aim of this systematic review was to assess the current knowledge around MI ability in autistic individuals.MethodsA systematic search was conducted for articles published before September 2023, following PRISMA guidance. Search engines were PsycINFO, PubMed, Web of Science, Scopus, Wiley Online Library and PsyArXiv. Inclusion criteria included: (a) Original peer-reviewed and pre-print publications; (b) Autistic and a non-autistic group (c) Implicit or explicit imagery tasks (d) Behavioral, neurophysiological or self-rating measures, (e) Written in the English language. Exclusion criteria were (a) Articles only about MI or autism (b) Articles where the autism data is not presented separately (c) Articles on action observation, recognition or imitation only (d) Review articles. A narrative synthesis of the evidence was conducted.ResultsSixteen studies across fourteen articles were included. Tasks were divided into implicit (unconscious) or explicit (conscious) MI. The implicit tasks used either hand (6) or body (4) rotation tasks. Explicit tasks consisted of perspective taking tasks (3), a questionnaire (1) and explicit instructions to imagine performing a movement (2). A MI strategy was apparent for the hand rotation task in autistic children, although may have been more challenging. Evidence was mixed and inconclusive for the remaining task types due to the varied range of different tasks and, measures conducted and design limitations. Further limitations included a sex bias toward males and the hand rotation task only being conducted in children.DiscussionThere is currently an incomplete understanding of MI ability in autistic individuals. The field would benefit from a battery of fully described implicit and explicit MI tasks, conducted across the same groups of autistic children and adults. Improved knowledge around MI in autistic individuals is important for understanding whether MI techniques may benefit motor coordination in some autistic people.","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"272 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diego Lopergolo, Francesca Rosini, Elena Pretegiani, Alessia Bargagli, Valeria Serchi, Alessandra Rufa
{"title":"Autosomal recessive cerebellar ataxias: a diagnostic classification approach according to ocular features","authors":"Diego Lopergolo, Francesca Rosini, Elena Pretegiani, Alessia Bargagli, Valeria Serchi, Alessandra Rufa","doi":"10.3389/fnint.2023.1275794","DOIUrl":"https://doi.org/10.3389/fnint.2023.1275794","url":null,"abstract":"Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of neurodegenerative disorders affecting primarily the cerebellum and/or its afferent tracts, often accompanied by damage of other neurological or extra-neurological systems. Due to the overlap of clinical presentation among ARCAs and the variety of hereditary, acquired, and reversible etiologies that can determine cerebellar dysfunction, the differential diagnosis is challenging, but also urgent considering the ongoing development of promising target therapies. The examination of afferent and efferent visual system may provide neurophysiological and structural information related to cerebellar dysfunction and neurodegeneration thus allowing a possible diagnostic classification approach according to ocular features. While optic coherence tomography (OCT) is applied for the parametrization of the optic nerve and macular area, the eye movements analysis relies on a wide range of eye-tracker devices and the application of machine-learning techniques. We discuss the results of clinical and eye-tracking oculomotor examination, the OCT findings and some advancing of computer science in ARCAs thus providing evidence sustaining the identification of robust eye parameters as possible markers of ARCAs.","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"99 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María Alejandra González-González, Silvia V. Conde, Ramon Latorre, Stéphanie C. Thébault, Marta Pratelli, Nicholas C. Spitzer, Alexei Verkhratsky, Marie-Ève Tremblay, Cuneyt G. Akcora, Ana G. Hernández-Reynoso, Melanie Ecker, Jayme Coates, Kathleen L. Vincent, Brandy Ma
{"title":"Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies","authors":"María Alejandra González-González, Silvia V. Conde, Ramon Latorre, Stéphanie C. Thébault, Marta Pratelli, Nicholas C. Spitzer, Alexei Verkhratsky, Marie-Ève Tremblay, Cuneyt G. Akcora, Ana G. Hernández-Reynoso, Melanie Ecker, Jayme Coates, Kathleen L. Vincent, Brandy Ma","doi":"10.3389/fnint.2024.1321872","DOIUrl":"https://doi.org/10.3389/fnint.2024.1321872","url":null,"abstract":"<p>Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"11 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139902849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}