Ceon Ramon, Uwe Graichen, Paolo Gargiulo, Frank Zanow, Thomas R Knösche, Jens Haueisen
{"title":"Spatiotemporal phase slip patterns for visual evoked potentials, covert object naming tasks, and insight moments extracted from 256 channel EEG recordings.","authors":"Ceon Ramon, Uwe Graichen, Paolo Gargiulo, Frank Zanow, Thomas R Knösche, Jens Haueisen","doi":"10.3389/fnint.2023.1087976","DOIUrl":"https://doi.org/10.3389/fnint.2023.1087976","url":null,"abstract":"<p><p>Phase slips arise from state transitions of the coordinated activity of cortical neurons which can be extracted from the EEG data. The phase slip rates (PSRs) were studied from the high-density (256 channel) EEG data, sampled at 16.384 kHz, of five adult subjects during covert visual object naming tasks. Artifact-free data from 29 trials were averaged for each subject. The analysis was performed to look for phase slips in the theta (4-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), and low gamma (30-49 Hz) bands. The phase was calculated with the Hilbert transform, then unwrapped and detrended to look for phase slip rates in a 1.0 ms wide stepping window with a step size of 0.06 ms. The spatiotemporal plots of the PSRs were made by using a montage layout of 256 equidistant electrode positions. The spatiotemporal profiles of EEG and PSRs during the stimulus and the first second of the post-stimulus period were examined in detail to study the visual evoked potentials and different stages of visual object recognition in the visual, language, and memory areas. It was found that the activity areas of PSRs were different as compared with EEG activity areas during the stimulus and post-stimulus periods. Different stages of the insight moments during the covert object naming tasks were examined from PSRs and it was found to be about 512 ± 21 ms for the 'Eureka' moment. Overall, these results indicate that information about the cortical phase transitions can be derived from the measured EEG data and can be used in a complementary fashion to study the cognitive behavior of the brain.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1087976"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10293627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9740411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remembrance of things perceived: Adding thalamocortical function to artificial neural networks.","authors":"Gerald E Loeb","doi":"10.3389/fnint.2023.1108271","DOIUrl":"https://doi.org/10.3389/fnint.2023.1108271","url":null,"abstract":"<p><p>Recent research has illuminated the complexity and importance of the thalamocortical system but it has been difficult to identify what computational functions it performs. Meanwhile, deep-learning artificial neural networks (ANNs) based on bio-inspired models of purely cortical circuits have achieved surprising success solving sophisticated cognitive problems associated historically with human intelligence. Nevertheless, the limitations and shortcomings of artificial intelligence (AI) based on such ANNs are becoming increasingly clear. This review considers how the addition of thalamocortical connectivity and its putative functions related to cortical attention might address some of those shortcomings. Such bio-inspired models are now providing both testable theories of biological cognition and improved AI technology, much of which is happening outside the usual academic venues.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1108271"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9180379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gamma sensory entrainment for cognitive improvement in neurodegenerative diseases: opportunities and challenges ahead.","authors":"Prangya Parimita Sahu, Philip Tseng","doi":"10.3389/fnint.2023.1146687","DOIUrl":"https://doi.org/10.3389/fnint.2023.1146687","url":null,"abstract":"<p><p>Neural oscillations have been categorized into various frequency bands that are mechanistically associated with different cognitive functions. Specifically, the gamma band frequency is widely implicated to be involved in a wide range of cognitive processes. As such, decreased gamma oscillation has been associated with cognitive declines in neurological diseases, such as memory dysfunction in Alzheimer's disease (AD). Recently, studies have attempted to artificially induce gamma oscillations by using 40 Hz sensory entrainment stimulation. These studies reported attenuation of amyloid load, hyper-phosphorylation of tau protein, and improvement in overall cognition in both AD patients and mouse models. In this review, we discuss the advancements in the use of sensory stimulation in animal models of AD and as a therapeutic strategy in AD patients. We also discuss future opportunities, as well as challenges, for using such strategies in other neurodegenerative and neuropsychiatric diseases.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1146687"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9779275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systems Thinking in an era of climate change: Does cognitive neuroscience hold the key to improving environmental decision making? A perspective on Climate-Smart Agriculture.","authors":"Baqir Lalani, Steven Gray, Tora Mitra-Ganguli","doi":"10.3389/fnint.2023.1145744","DOIUrl":"https://doi.org/10.3389/fnint.2023.1145744","url":null,"abstract":"<p><p>Systems Thinking (ST) can be defined as a mental construct that recognises patterns and connections in a particular complex system to make the \"best decision\" possible. In the field of sustainable agriculture and climate change, higher degrees of ST are assumed to be associated with more successful adaptation strategies under changing conditions, and \"better\" environmental decision making in a number of environmental and cultural settings. Future climate change scenarios highlight the negative effects on agricultural productivity worldwide, particularly in low-income countries (LICs) situated in the Global South. Alongside this, current measures of ST are limited by their reliance on recall, and are prone to possible measurement errors. Using Climate-Smart Agriculture (CSA), as an example case study, in this article we explore: (i) ST from a social science perspective; (ii) cognitive neuroscience tools that could be used to explore ST abilities in the context of LICs; (iii) an exploration of the possible correlates of systems thinking: observational learning, prospective thinking/memory and the theory of planned behaviour and (iv) a proposed theory of change highlighting the integration of social science frameworks and a cognitive neuroscience perspective. We find, recent advancements in the field of cognitive neuroscience such as Near-Infrared Spectroscopy (NIRS) provide exciting potential to explore previously hidden forms of cognition, especially in a low-income country/field setting; improving our understanding of environmental decision-making and the ability to more accurately test more complex hypotheses where access to laboratory studies is severely limited. We highlight that ST may correlate with other key aspects involved in environmental decision-making and posit motivating farmers <i>via</i> specific brain networks would: (a) enhance understanding of CSA practices (e.g., <i>via</i> the frontoparietal network extending from the dorsolateral prefrontal cortex (DLPFC) to the parietal cortex (PC) a control hub involved in ST and observational learning) such as tailoring training towards developing improved ST abilities among farmers and involving observational learning more explicitly and (b) motivate farmers to use such practices [e.g., <i>via</i> the network between the DLPFC and nucleus accumbens (NAc)] which mediates reward processing and motivation by focussing on a reward/emotion to engage farmers. Finally, our proposed interdisciplinary theory of change can be used as a starting point to encourage discussion and guide future research in this space.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1145744"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9469585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Gevers-Montoro, Mariana Puente-Tobares, Aléxiane Monréal, Francisco Miguel Conesa-Buendía, Mathieu Piché, Arantxa Ortega-De Mues
{"title":"Urinary TNF-α as a potential biomarker for chronic primary low back pain.","authors":"Carlos Gevers-Montoro, Mariana Puente-Tobares, Aléxiane Monréal, Francisco Miguel Conesa-Buendía, Mathieu Piché, Arantxa Ortega-De Mues","doi":"10.3389/fnint.2023.1207666","DOIUrl":"https://doi.org/10.3389/fnint.2023.1207666","url":null,"abstract":"<p><strong>Introduction: </strong>Over two thirds of individuals with low back pain (LBP) may experience recurrent or persistent symptoms in the long term. Yet, current data do not allow to predict who will develop chronic low back pain and who will recover from an acute episode. Elevated serum levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) have been associated with poor recovery and persistent pain following an acute episode of LBP. Inflammatory cytokines may also mediate mechanisms involved in nociplastic pain, and thus, have significant implications in chronic primary low back pain (CPLBP).</p><p><strong>Methods: </strong>This study aimed to investigate the potential of urinary TNF-α levels for predicting outcomes and characterizing clinical features of CPLBP patients. Twenty-four patients with CPLBP and 24 sex- and age-matched asymptomatic controls were recruited. Urinary TNF-α concentrations were measured at baseline and after 4 weeks, during which CPLBP patients underwent spinal manipulative therapy (SMT).</p><p><strong>Results: </strong>Concentrations of TNF-α were found to be elevated in baseline urine samples of CPLBP patients compared to asymptomatic controls. Moreover, these values differed among patients depending on their pain trajectory. Patients with persistent pain showed higher levels of TNF-α, when compared to those with episodic CPLBP. Furthermore, baseline TNF-α concentrations and their changes after 4 weeks predicted alterations in pain intensity and disability following SMT in patients with CPLBP.</p><p><strong>Discussion: </strong>These findings warrant further research on the potential use of urinary TNF-α concentrations as a prognostic biomarker for CPLBP.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1207666"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10199053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduced eye optical quality contributes to worse chromatic thresholds in aging.","authors":"Marcelo Fernandes Costa, Livia Soledade Rego, Leonardo Dutra Henriques, Carlo Martins Gaddi, Givago Silva Souza","doi":"10.3389/fnint.2023.1129315","DOIUrl":"https://doi.org/10.3389/fnint.2023.1129315","url":null,"abstract":"<p><strong>Purpose: </strong>Aging causes substantial changes in the intraocular lens, which leads to a reduction in chromatic perception. We aimed to measure the ocular light dispersion component in relation to the reduction in color vision by aging.</p><p><strong>Methods: </strong>Intraocular straylight was quantified psychophysically by C-Quant for light dispersion [Log(s)], reliability of the results (ESD), and psychometric sampling quality (Q). The Cambridge Color Test Trivector protocol measured the chromaticity thresholds for protan, deutan, and tritan color confusion axis in CIE 1976 u' v' units. We tested 224 subjects aged 24-68 years (106 men) with normal best-corrected visual acuity and without clinical evidence of cataracts.</p><p><strong>Results: </strong>A significant positive correlation was found between ocular dispersion of light and chromaticity thresholds for protan (r = 0.42; <i>p</i> < 0.001), deutan (r = 0.49; <i>p</i> < 0.001) and tritan (r = 0.51; <i>p</i> < 0.0001) color confusion axes with a moderate effect size (η<sup>2</sup> = 0.39). However, a weak contribution of the logarithm of the straylight in predicting the chromaticity threshold for protan (b = 0.15; <i>p</i> = 0.025), deutan (b = 0.27; <i>p</i> = 0.001) and tritan (b = 0.21; <i>p</i> = 0.001) color confusion axes was verified in the regression coefficients. The other two measurement quality parameters estimated in the C-Quant were not correlated with chromaticity thresholds, suggesting that there are no problems with the quality of the measurement performed.</p><p><strong>Conclusion: </strong>An increase in ocular light dispersion that occurs physiologically with aging negatively impacts the chromaticity threshold in a similar manner across all three color confusion axes. The weak regression effects suggest that neural rather than optical processes were more related to the reduction in chromaticity in aging.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1129315"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9274113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Working memory load modulates the processing of audiovisual distractors: A behavioral and event-related potentials study.","authors":"Yichen Yuan, Xiang He, Zhenzhu Yue","doi":"10.3389/fnint.2023.1120668","DOIUrl":"https://doi.org/10.3389/fnint.2023.1120668","url":null,"abstract":"<p><p>The interplay between different modalities can help to perceive stimuli more effectively. However, very few studies have focused on how multisensory distractors affect task performance. By adopting behavioral and event-related potentials (ERPs) techniques, the present study examined whether multisensory audiovisual distractors could attract attention more effectively than unisensory distractors. Moreover, we explored whether such a process was modulated by working memory load. Across three experiments, n-back tasks (1-back and 2-back) were adopted with peripheral auditory, visual, or audiovisual distractors. Visual and auditory distractors were white discs and pure tones (Experiments 1 and 2), pictures and sounds of animals (Experiment 3), respectively. Behavioral results in Experiment 1 showed a significant interference effect under high working memory load but not under low load condition. The responses to central letters with audiovisual distractors were significantly slower than those to letters without distractors, while no significant difference was found between unisensory distractor and without distractor conditions. Similarly, ERP results in Experiments 2 and 3 showed that there existed an integration only under high load condition. That is, an early integration for simple audiovisual distractors (240-340 ms) and a late integration for complex audiovisual distractors (440-600 ms). These findings suggest that multisensory distractors can be integrated and effectively attract attention away from the main task, i.e., interference effect. Moreover, this effect is pronounced only under high working memory load condition.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1120668"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9155205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Zhang, Zengyang He, Lulu Liu, Huailong Li, Tian Wang, Xuefeng Zhu, Yanqing Wang, Dongliang Zhu, Yong Ning, Yi Xu
{"title":"Probiotic has prophylactic effect on spatial memory deficits by modulating gut microbiota characterized by the inhibitory growth of <i>Escherichia coli</i>.","authors":"Jie Zhang, Zengyang He, Lulu Liu, Huailong Li, Tian Wang, Xuefeng Zhu, Yanqing Wang, Dongliang Zhu, Yong Ning, Yi Xu","doi":"10.3389/fnint.2023.1090294","DOIUrl":"https://doi.org/10.3389/fnint.2023.1090294","url":null,"abstract":"<p><p><b>Background:</b> The aim of this study is to interrogate the prophylactic effect of probiotic on the lead-induced spatial memory impairment, as well as the underlying mechanisms based on gut microbiota. <b>Methods:</b> Rats were exposed postnatally to 100 ppm of lead acetate during lactation (from postnatal day 1 to 21), to establish the memory deficits model. A probiotic bacterium, namely <i>Lacticaseibacillus rhamnosus</i>, was administered by drinking into pregnant rats with a dosage of 10<sup>9</sup> CFU/rat/day till birth. At postnatal week 8 (PNW8), the rats were subjected to Morris water maze and Y-maze test, with fecal samples collected for 16S rRNA sequencing. Besides, the inhibitory effect of <i>Lb. rhamnosus</i> on <i>Escherichia coli</i> was carried out in bacterial co-culture. <b>Results:</b> Female rats prenatally exposed to probiotic improved their performances in the behavioral test, indicating that probiotic could protect rats from memory deficits caused by postnatal lead exposure. This bioremediation activity varies depending on the intervention paradigm used. As revealed by microbiome analysis, although administered in a distinct period from lead exposure, <i>Lb. rhamnosus</i> further changed the microbial structure disrupted by lead exposure, suggesting an effective transgenerational intervention. Of note, gut microbiota, represented by Bacteroidota, varied greatly depending on the intervention paradigm as well as the developmental stage. The concerted alterations were revealed between some keystone taxa and behavioral abnormality, including lactobacillus and <i>E. coli</i>. To this end, an <i>in vitro</i> co-culture was created to demonstrate that <i>Lb. rhamnosus</i> could inhibit the growth of <i>E. coli</i> with direct contact, which is dependent on the growth condition under study. In addition, <i>in vivo</i> infection of <i>E. coli</i> O157 aggravated memory dysfunction, which could also be rescued by probiotic colonization. <b>Conclusions:</b> Early probiotic intervention could prevent organisms from lead-induced memory decline in later life through reprogramming gut microbiota and inhibiting <i>E. coli</i>, providing a promising approach to ameliorate the cognitive damage with environmental origins.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1090294"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9088047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}