Matthew N Svalina, Regina Sullivan, Diego Restrepo, Molly M Huntsman
{"title":"From circuits to behavior: Amygdala dysfunction in fragile X syndrome.","authors":"Matthew N Svalina, Regina Sullivan, Diego Restrepo, Molly M Huntsman","doi":"10.3389/fnint.2023.1128529","DOIUrl":"https://doi.org/10.3389/fnint.2023.1128529","url":null,"abstract":"<p><p>Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a repeat expansion mutation in the promotor region of the <i>FMR1</i> gene resulting in transcriptional silencing and loss of function of fragile X messenger ribonucleoprotein 1 protein (FMRP). FMRP has a well-defined role in the early development of the brain. Thus, loss of the FMRP has well-known consequences for normal cellular and synaptic development leading to a variety of neuropsychiatric disorders including an increased prevalence of amygdala-based disorders. Despite our detailed understanding of the pathophysiology of FXS, the precise cellular and circuit-level underpinnings of amygdala-based disorders is incompletely understood. In this review, we discuss the development of the amygdala, the role of neuromodulation in the critical period plasticity, and recent advances in our understanding of how synaptic and circuit-level changes in the basolateral amygdala contribute to the behavioral manifestations seen in FXS.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1128529"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9546055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel L Cooke, Hui Shen, Madhavi Duvvuri, Daniel Thompson, Thomas Neylan, William Wolfe, Steven Hetts, Bruce Ovbiagele, Mary Whooley, Beth Cohen
{"title":"Association of select psychiatric disorders with incident brain aneurysm and subarachnoid hemorrhage among veterans.","authors":"Daniel L Cooke, Hui Shen, Madhavi Duvvuri, Daniel Thompson, Thomas Neylan, William Wolfe, Steven Hetts, Bruce Ovbiagele, Mary Whooley, Beth Cohen","doi":"10.3389/fnint.2023.1207610","DOIUrl":"https://doi.org/10.3389/fnint.2023.1207610","url":null,"abstract":"<p><strong>Background: </strong>Brain aneurysms represent a significant cause of hemorrhagic stroke. Prior research has demonstrated links between stress and stroke, including brain aneurysms. We aimed to determine relationships between select psychiatric disorders and aneurysms and aneurysmal SAH.</p><p><strong>Methods: </strong>We performed retrospective, case-control study of a National Veterans Affairs population with two experimental groups (aneurysm-only and aneurysmal SAH) and 10-fold controls per group matched by age, date, and clinical data source. The studied the presence of 4 psychiatric disorders: Posttraumatic stress disorder (PTSD), major depressive disorder (MDD), generalized anxiety disorder (GAD), and other mood disorders. Our main outcomes Unadjusted and multivariable adjusted ORs of PTSD, MDD, GAD, and mood disorders within aneurysm-only and aSAH groups.</p><p><strong>Results: </strong>In 6,320,789 US Veterans who were enrolled for at least 5 years in Medicare and/or the Veterans Health Administration, we identified 35,094 cases of aneurysm without SAH and 5,749 cases of aneurysm with SAH between 1/2005 and 12/2019. In analyses adjusted for sex, hypertension, and tobacco use, patients with aneurysm were more likely than matched controls to have a history of PTSD (OR 1.48), MDD (OR 1.33), GAD (OR 1.26), and other mood disorders (OR 1.34) (all <i>p</i>-values < 0.0001). Similarly, patients with aSAH were more likely than controls to have a history of PTSD (OR 1.35), MDD (OR 1.38), GAD (OR 1.18), and other mood disorders (OR 1.30) (all <i>p</i>-values < 0.0001).</p><p><strong>Conclusion: </strong>The study, the largest of its kind, further suggests links between psychiatric disorders and stroke. This is important as patients with aneurysms are not routinely screened for such psychiatric risk factors. Additional research on this topic could lead to novel strategies to improve stroke prevention.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1207610"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433370/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10105524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordan E Norris, Lauren M Schmitt, Lisa A De Stefano, Ernest V Pedapati, Craig A Erickson, John A Sweeney, Lauren E Ethridge
{"title":"Neuropsychiatric feature-based subgrouping reveals neural sensory processing spectrum in female FMR1 premutation carriers: A pilot study.","authors":"Jordan E Norris, Lauren M Schmitt, Lisa A De Stefano, Ernest V Pedapati, Craig A Erickson, John A Sweeney, Lauren E Ethridge","doi":"10.3389/fnint.2023.898215","DOIUrl":"https://doi.org/10.3389/fnint.2023.898215","url":null,"abstract":"<p><strong>Introduction: </strong>Fragile X Syndrome (FXS) is rare genetic condition characterized by a repeat expansion (CGG) in the Fragile X messenger ribonucleoprotein 1 (FMR1) gene where individuals with greater than 200 repeats are defined as full mutation. FXS clinical presentation often includes intellectual disability, and autism-like symptoms, including anxiety and sensory hypersensitivities. Individuals with 55 to <200 CGG repeats are said to have the FMR1 premutation, which is not associated with primary characteristics of the full mutation, but with an increased risk for anxiety, depression, and other affective conditions, as well as and impaired cognitive processing differences that vary in severity. Defining subgroups of premutation carriers based on distinct biological features may identify subgroups with varying levels of psychiatric, cognitive, and behavioral alterations.</p><p><strong>Methods: </strong>The current pilot study utilized 3 cluster subgroupings defined by previous k means cluster analysis on neuropsychiatric, cognitive, and resting EEG variables in order to examine basic sensory auditory chirp task-based EEG parameters from 33 females with the FMR1 premutation (ages 17-78).</p><p><strong>Results: </strong>Based on the predefined, neuropsychiatric three-cluster solution, premutation carriers with increased neuropsychiatric features and higher CGG repeat counts (cluster 1) showed decreased stimulus onset response, similar to previous ERP findings across a number of psychiatric disorders but opposite to findings in individuals with full mutation FXS. Premutation carriers with increased executive dysfunction and resting gamma power (cluster 2) exhibited decreased gamma phase locking to a chirp stimulus, similar to individuals with full mutation FXS. Cluster 3 members, who were relatively unaffected by psychiatric or cognitive symptoms, showed the most normative task-based EEG metrics.</p><p><strong>Discussion: </strong>Our findings suggest a spectrum of sensory processing characteristics present in subgroups of premutation carriers that have been previously understudied due to lack of overall group differences. Our findings also further validate the pre-defined clinical subgroups by supporting links between disturbances in well-defined neural pathways and behavioral alterations that may be informative for identifying the mechanisms supporting specific risk factors and divergent therapeutic needs in individuals with the FMR1 premutation.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"898215"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10766165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isabelle F Witteveen, Emily McCoy, Troy D Holsworth, Catherine Z Shen, Winnie Chang, Madelyn G Nance, Allison R Belkowitz, Avery Dougald, Meghan H Puglia, Adema Ribic
{"title":"Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex.","authors":"Isabelle F Witteveen, Emily McCoy, Troy D Holsworth, Catherine Z Shen, Winnie Chang, Madelyn G Nance, Allison R Belkowitz, Avery Dougald, Meghan H Puglia, Adema Ribic","doi":"10.3389/fnint.2023.1149159","DOIUrl":"https://doi.org/10.3389/fnint.2023.1149159","url":null,"abstract":"<p><p>Prematurity is among the leading risks for poor neurocognitive outcomes. The brains of preterm infants show alterations in structure and electrical activity, but the underlying circuit mechanisms are unclear. To address this, we performed a cross-species study of the electrophysiological activity in the visual cortices of prematurely born infants and mice. Using electroencephalography (EEG) in a sample of healthy preterm (<i>N</i> = 29) and term (<i>N</i> = 28) infants, we found that the maturation of the aperiodic EEG component was accelerated in the preterm cohort, with a significantly flatter 1/f slope when compared to the term infants. The flatter slope was a result of decreased spectral power in the theta and alpha bands and was correlated with the degree of prematurity. To determine the circuit and cellular changes that potentially mediate the changes in 1/f slope after preterm birth, we used <i>in vivo</i> electrophysiology in preterm mice and found that, similar to infants, preterm birth results in a flattened 1/f slope. We analyzed neuronal activity in the visual cortex of preterm (<i>N</i> = 6) and term (<i>N</i> = 9) mice and found suppressed spontaneous firing of neurons. Using immunohistochemistry, we further found an accelerated maturation of inhibitory circuits. In both preterm mice and infants, the functional maturation of the cortex was accelerated, underscoring birth as a critical checkpoint in cortical maturation. Our study points to a potential mechanism of preterm birth-related changes in resting neural activity, highlighting the utility of a cross-species approach in studying the neural circuit mechanisms of preterm birth-related neurodevelopmental conditions.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1149159"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9741771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ShuJia Zuo, HaiJing Wang, Qiang Zhao, Jie Tang, Min Wang, Yu Zhang, Ming Sang, Jing Tian, Puqing Wang
{"title":"Corrigendum: High levels of <i>Bifidobacteriaceae</i> are associated with the pathogenesis of Parkinson's disease.","authors":"ShuJia Zuo, HaiJing Wang, Qiang Zhao, Jie Tang, Min Wang, Yu Zhang, Ming Sang, Jing Tian, Puqing Wang","doi":"10.3389/fnint.2023.1229949","DOIUrl":"https://doi.org/10.3389/fnint.2023.1229949","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.3389/fnint.2022.1054627.].</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1229949"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9921040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The brain in motion-cognitive effects of simultaneous motor activity.","authors":"Maren Schmidt-Kassow, Jochen Kaiser","doi":"10.3389/fnint.2023.1127310","DOIUrl":"https://doi.org/10.3389/fnint.2023.1127310","url":null,"abstract":"<p><p>During the last 30 years, a large number of behavioral studies have investigated the effect of simultaneous exercise on cognitive functions. The heterogeneity of the results has been attributed to different parameters, such as intensity or modality of physical activity, and the investigated cognitive processes. More recent methodological improvements have enabled to record electroencephalography (EEG) during physical exercise. EEG studies combining cognitive tasks with exercise have described predominantly detrimental effects on cognitive processes and EEG parameters. However, differences in the underlying rationale and the design of EEG versus behavioral studies make direct comparisons between both types of studies difficult. In this narrative review of dual-task experiments we evaluated behavioral and EEG studies and discuss possible explanations for the heterogeneity of results and for the discrepancy between behavioral and EEG studies. Furthermore, we provide a proposal for future EEG studies on simultaneous motion to be a useful complement to behavioral studies. A crucial factor might be to find for each cognitive function the motor activity that matches this function in terms of attentional focus. This hypothesis should be investigated systematically in future studies.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1127310"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9674178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vestibular prosthesis: from basic research to clinics.","authors":"Enrique Soto, Adriana Pliego, Rosario Vega","doi":"10.3389/fnint.2023.1161860","DOIUrl":"https://doi.org/10.3389/fnint.2023.1161860","url":null,"abstract":"<p><p>Balance disorders are highly prevalent worldwide, causing substantial disability with high personal and socioeconomic impact. The prognosis in many of these patients is poor, and rehabilitation programs provide little help in many cases. This medical problem can be addressed using microelectronics by combining the highly successful cochlear implant experience to produce a vestibular prosthesis, using the technical advances in micro gyroscopes and micro accelerometers, which are the electronic equivalents of the semicircular canals (SCC) and the otolithic organs. Reaching this technological milestone fostered the possibility of using these electronic devices to substitute the vestibular function, mainly for visual stability and posture, in case of damage to the vestibular endorgans. The development of implantable and non-implantable devices showed diverse outcomes when considering the integrity of the vestibular pathways, the device parameters (current intensity, impedance, and waveform), and the targeted physiological function (balance and gaze). In this review, we will examine the development and testing of various prototypes of the vestibular implant (VI). The insight raised by examining the state-of-the-art vestibular prosthesis will facilitate the development of new device-development strategies and discuss the feasibility of complex combinations of implantable devices for disorders that directly affect balance and motor performance.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1161860"},"PeriodicalIF":3.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9923194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}