Organic Process Research & Development最新文献

筛选
英文 中文
Leveraging Supercritical Fluid Chromatography for Monitoring the Formation of Methanol Adducts of AR-LDD Antagonist BMS-986409 in Spray-Dried Dispersion Materials 利用超临界液相色谱法监测AR-LDD拮抗剂BMS-986409在喷雾干燥分散材料中甲醇加合物的形成
IF 3.4 3区 化学
Organic Process Research & Development Pub Date : 2025-01-17 DOI: 10.1021/acs.oprd.4c00448
Brian Lingfeng He, Xuejun Xu, Leon Liang
{"title":"Leveraging Supercritical Fluid Chromatography for Monitoring the Formation of Methanol Adducts of AR-LDD Antagonist BMS-986409 in Spray-Dried Dispersion Materials","authors":"Brian Lingfeng He, Xuejun Xu, Leon Liang","doi":"10.1021/acs.oprd.4c00448","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00448","url":null,"abstract":"BMS-986409 is a novel ligand-directed degrader of the androgen receptor developed by Bristol Myers Squibb Company for the treatment of metastable castration-resistant prostate cancer (mCRPC). The active pharmaceutical ingredient (API) has an (<i>R</i>,<i>R</i>) configuration and three minor stereoisomers, including (<i>R</i>,<i>S</i>), (<i>S</i>,<i>R</i>), and (<i>S</i>,<i>S</i>) isomers. During pharmaceutical formulation development, methanol adducts were found in spray-dried dispersion (SDD) materials at alarming levels. To investigate the formation mechanism of methanol adducts, we successfully developed an ultrahigh performance liquid chromatography achiral method and a supercritical fluid chromatography chiral method to separate all potential methanol adducts and stereoisomers of BMS-986409. It is concluded that ring-opening at the 2-position of the gluarimide moiety (Pathway 1) is the favored formation mechanism of methanol adducts during the BMS-986409 SDD manufacturing process and epimerization can be neglected. However, under basic conditions, ring-opening at the 6-position of the gluarimide moiety (Pathway 2) becomes dominant and, in the meantime, epimerization is promoted to a great extent. The knowledge collected by leveraging the SFC chiral method gives us the needed confidence in the analytical impurity control strategy that solely relies on the achiral method for monitoring methanol adduct impurities in SDD materials and sample release in future pharmaceutical development.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"21 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergizing Process Conditions, Water Sensitivity, and Kinetic Mechanisms to Optimize Sodium Salicylate Yield in Sodium Phenol Carboxylation
IF 3.1 3区 化学
Organic Process Research & Development Pub Date : 2025-01-17 DOI: 10.1021/acs.oprd.4c0038310.1021/acs.oprd.4c00383
Haodong Zhang, Junmei Zhang, Jingjing Ma, Maoqian Wu, Linbo Hu, Hongfu Chen and Zhenya Duan*, 
{"title":"Synergizing Process Conditions, Water Sensitivity, and Kinetic Mechanisms to Optimize Sodium Salicylate Yield in Sodium Phenol Carboxylation","authors":"Haodong Zhang,&nbsp;Junmei Zhang,&nbsp;Jingjing Ma,&nbsp;Maoqian Wu,&nbsp;Linbo Hu,&nbsp;Hongfu Chen and Zhenya Duan*,&nbsp;","doi":"10.1021/acs.oprd.4c0038310.1021/acs.oprd.4c00383","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00383https://doi.org/10.1021/acs.oprd.4c00383","url":null,"abstract":"<p >Sodium salicylate can be formed by carboxylation of solid sodium phenol particles with carbon dioxide gas under certain conditions. Single-factor experiments were carried out with self-made dried sodium phenol particles in a batch high-pressure reactor. It was determined that the carboxylation reaction of sodium phenol particles was more suitable under the conditions of a reaction temperature of 160 °C, a reaction pressure of 0.55 MPa, a reaction time of about 40 min, and a stirring speed of 50 rpm. Besides that, the water content of the material also had important effects on the yield. Through the establishment of the kinetic model of the carboxylation reaction between solid sodium phenol particles and carbon dioxide gas, the control step of the reaction temperature at 150 and 160 °C was determined as ash layer diffusion, and the kinetic equation was further calculated. The research results can provide the basic technological conditions and kinetic data of the carboxylation reaction of sodium phenol particles and provide a reference for the development of a continuous and efficient production process of sodium phenol carboxylation.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 2","pages":"344–352 344–352"},"PeriodicalIF":3.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergizing Process Conditions, Water Sensitivity, and Kinetic Mechanisms to Optimize Sodium Salicylate Yield in Sodium Phenol Carboxylation 苯酚钠羧化水杨酸钠收率优化的协同工艺条件、水敏感性及动力学机制
IF 3.4 3区 化学
Organic Process Research & Development Pub Date : 2025-01-17 DOI: 10.1021/acs.oprd.4c00383
Haodong Zhang, Junmei Zhang, Jingjing Ma, Maoqian Wu, Linbo Hu, Hongfu Chen, Zhenya Duan
{"title":"Synergizing Process Conditions, Water Sensitivity, and Kinetic Mechanisms to Optimize Sodium Salicylate Yield in Sodium Phenol Carboxylation","authors":"Haodong Zhang, Junmei Zhang, Jingjing Ma, Maoqian Wu, Linbo Hu, Hongfu Chen, Zhenya Duan","doi":"10.1021/acs.oprd.4c00383","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00383","url":null,"abstract":"Sodium salicylate can be formed by carboxylation of solid sodium phenol particles with carbon dioxide gas under certain conditions. Single-factor experiments were carried out with self-made dried sodium phenol particles in a batch high-pressure reactor. It was determined that the carboxylation reaction of sodium phenol particles was more suitable under the conditions of a reaction temperature of 160 °C, a reaction pressure of 0.55 MPa, a reaction time of about 40 min, and a stirring speed of 50 rpm. Besides that, the water content of the material also had important effects on the yield. Through the establishment of the kinetic model of the carboxylation reaction between solid sodium phenol particles and carbon dioxide gas, the control step of the reaction temperature at 150 and 160 °C was determined as ash layer diffusion, and the kinetic equation was further calculated. The research results can provide the basic technological conditions and kinetic data of the carboxylation reaction of sodium phenol particles and provide a reference for the development of a continuous and efficient production process of sodium phenol carboxylation.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"49 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Supercritical Fluid Chromatography for Monitoring the Formation of Methanol Adducts of AR-LDD Antagonist BMS-986409 in Spray-Dried Dispersion Materials
IF 3.1 3区 化学
Organic Process Research & Development Pub Date : 2025-01-17 DOI: 10.1021/acs.oprd.4c0044810.1021/acs.oprd.4c00448
Brian Lingfeng He*, Xuejun Xu* and Leon Liang, 
{"title":"Leveraging Supercritical Fluid Chromatography for Monitoring the Formation of Methanol Adducts of AR-LDD Antagonist BMS-986409 in Spray-Dried Dispersion Materials","authors":"Brian Lingfeng He*,&nbsp;Xuejun Xu* and Leon Liang,&nbsp;","doi":"10.1021/acs.oprd.4c0044810.1021/acs.oprd.4c00448","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00448https://doi.org/10.1021/acs.oprd.4c00448","url":null,"abstract":"<p >BMS-986409 is a novel ligand-directed degrader of the androgen receptor developed by Bristol Myers Squibb Company for the treatment of metastable castration-resistant prostate cancer (mCRPC). The active pharmaceutical ingredient (API) has an (<i>R</i>,<i>R</i>) configuration and three minor stereoisomers, including (<i>R</i>,<i>S</i>), (<i>S</i>,<i>R</i>), and (<i>S</i>,<i>S</i>) isomers. During pharmaceutical formulation development, methanol adducts were found in spray-dried dispersion (SDD) materials at alarming levels. To investigate the formation mechanism of methanol adducts, we successfully developed an ultrahigh performance liquid chromatography achiral method and a supercritical fluid chromatography chiral method to separate all potential methanol adducts and stereoisomers of BMS-986409. It is concluded that ring-opening at the 2-position of the gluarimide moiety (Pathway 1) is the favored formation mechanism of methanol adducts during the BMS-986409 SDD manufacturing process and epimerization can be neglected. However, under basic conditions, ring-opening at the 6-position of the gluarimide moiety (Pathway 2) becomes dominant and, in the meantime, epimerization is promoted to a great extent. The knowledge collected by leveraging the SFC chiral method gives us the needed confidence in the analytical impurity control strategy that solely relies on the achiral method for monitoring methanol adduct impurities in SDD materials and sample release in future pharmaceutical development.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 2","pages":"440–449 440–449"},"PeriodicalIF":3.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OPR&D: An Exceptional Legacy and Exciting Opportunities for the Future of Process Chemistry OPR&D:过程化学未来的杰出遗产和激动人心的机遇
IF 3.4 3区 化学
Organic Process Research & Development Pub Date : 2025-01-17 DOI: 10.1021/acs.oprd.4c00537
Margaret M. Faul
{"title":"OPR&D: An Exceptional Legacy and Exciting Opportunities for the Future of Process Chemistry","authors":"Margaret M. Faul","doi":"10.1021/acs.oprd.4c00537","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00537","url":null,"abstract":"This article has not yet been cited by other publications.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OPR&D: An Exceptional Legacy and Exciting Opportunities for the Future of Process Chemistry
IF 3.1 3区 化学
Organic Process Research & Development Pub Date : 2025-01-17 DOI: 10.1021/acs.oprd.4c0053710.1021/acs.oprd.4c00537
Margaret M. Faul*, 
{"title":"OPR&D: An Exceptional Legacy and Exciting Opportunities for the Future of Process Chemistry","authors":"Margaret M. Faul*,&nbsp;","doi":"10.1021/acs.oprd.4c0053710.1021/acs.oprd.4c00537","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00537https://doi.org/10.1021/acs.oprd.4c00537","url":null,"abstract":"","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 1","pages":"1–2 1–2"},"PeriodicalIF":3.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143089118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements 用相图和原位测量相结合的方法研究利伐沙班-草酸共晶制备的结晶工艺
IF 3.4 3区 化学
Organic Process Research & Development Pub Date : 2025-01-15 DOI: 10.1021/acs.oprd.4c00509
Erika Hriňová, Igor Čerňa, Eliška Zmeškalová, Luděk Ridvan, Miroslav Šoóš
{"title":"Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements","authors":"Erika Hriňová, Igor Čerňa, Eliška Zmeškalová, Luděk Ridvan, Miroslav Šoóš","doi":"10.1021/acs.oprd.4c00509","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00509","url":null,"abstract":"This study presents the development of the crystallization process for the rivaroxaban–oxalic acid cocrystal. The solvent screening was conducted by means of the crystallization of the cocrystal from a saturated solution of acetone, ethanol, isopropanol, acetonitrile, ethyl acetate, and ethyl formate. Two selected solvents, namely, ethyl formate and acetone, were subjected to ternary phase diagram construction in order to ascertain the system equilibrium and identify the boundaries for pure cocrystal crystallization. The crystallization process was subsequently examined through the utilization of an in situ Raman spectroscopy probe. It was observed that the rate of transformation decreased at higher temperatures, which is most probably due to lower saturation in terms of the cocrystal. The reaction mechanism was observed by an in situ imaging probe, showing that new crystals were growing directly from the solution instead of growing from the surface of existing crystals. These findings were employed in the development of a crystallization process for both solvents, resulting in enhanced time and cost efficiency. A notable difference in particle size was observed between solvents, with acetone producing larger crystals. Consequently, ethyl formate was selected as the optimal solvent for further scale-up of the process, given its favorable impact on dissolution enhancement.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"30 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements
IF 3.1 3区 化学
Organic Process Research & Development Pub Date : 2025-01-15 DOI: 10.1021/acs.oprd.4c0050910.1021/acs.oprd.4c00509
Erika Hriňová*, Igor Čerňa, Eliška Zmeškalová, Luděk Ridvan and Miroslav Šoóš*, 
{"title":"Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements","authors":"Erika Hriňová*,&nbsp;Igor Čerňa,&nbsp;Eliška Zmeškalová,&nbsp;Luděk Ridvan and Miroslav Šoóš*,&nbsp;","doi":"10.1021/acs.oprd.4c0050910.1021/acs.oprd.4c00509","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00509https://doi.org/10.1021/acs.oprd.4c00509","url":null,"abstract":"<p >This study presents the development of the crystallization process for the rivaroxaban–oxalic acid cocrystal. The solvent screening was conducted by means of the crystallization of the cocrystal from a saturated solution of acetone, ethanol, isopropanol, acetonitrile, ethyl acetate, and ethyl formate. Two selected solvents, namely, ethyl formate and acetone, were subjected to ternary phase diagram construction in order to ascertain the system equilibrium and identify the boundaries for pure cocrystal crystallization. The crystallization process was subsequently examined through the utilization of an in situ Raman spectroscopy probe. It was observed that the rate of transformation decreased at higher temperatures, which is most probably due to lower saturation in terms of the cocrystal. The reaction mechanism was observed by an in situ imaging probe, showing that new crystals were growing directly from the solution instead of growing from the surface of existing crystals. These findings were employed in the development of a crystallization process for both solvents, resulting in enhanced time and cost efficiency. A notable difference in particle size was observed between solvents, with acetone producing larger crystals. Consequently, ethyl formate was selected as the optimal solvent for further scale-up of the process, given its favorable impact on dissolution enhancement.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 2","pages":"565–573 565–573"},"PeriodicalIF":3.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.4c00509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Development of an Optimized Process for 2,4-Dichloro-5-fluoroacetophenone: A Key Intermediate of Ciprofloxacin” 对“环丙沙星关键中间体2,4-二氯-5-氟苯乙酮优化工艺的开发”的更正
IF 3.4 3区 化学
Organic Process Research & Development Pub Date : 2025-01-15 DOI: 10.1021/acs.oprd.4c00545
Kai Yin, Youlan He, Hao Wu, Xubin He
{"title":"Correction to “Development of an Optimized Process for 2,4-Dichloro-5-fluoroacetophenone: A Key Intermediate of Ciprofloxacin”","authors":"Kai Yin, Youlan He, Hao Wu, Xubin He","doi":"10.1021/acs.oprd.4c00545","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00545","url":null,"abstract":"The author Yiwei Zhang and his affiliation and funding should be removed from the original publication (DOI: 10.1021/acs.oprd.4c00208), which was published on July 24, 2024, due to a preexisting confidentiality agreement in relation to this work. The following funding should be removed from the original acknowledgment section: the National Natural Science Foundation of China (no. 21878047) and the Fundamental Research Funds for the Central Universities (2242020K1G001). The corrected authorship list and funding acknowledgments are listed below under Author Information. This work was supported by the Key Research and Development Project of Zhejiang Province (no. 2023C03145). This article has not yet been cited by other publications.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"74 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Development of an Optimized Process for 2,4-Dichloro-5-fluoroacetophenone: A Key Intermediate of Ciprofloxacin”
IF 3.1 3区 化学
Organic Process Research & Development Pub Date : 2025-01-15 DOI: 10.1021/acs.oprd.4c0054510.1021/acs.oprd.4c00545
Kai Yin*, Youlan He, Hao Wu and Xubin He, 
{"title":"Correction to “Development of an Optimized Process for 2,4-Dichloro-5-fluoroacetophenone: A Key Intermediate of Ciprofloxacin”","authors":"Kai Yin*,&nbsp;Youlan He,&nbsp;Hao Wu and Xubin He,&nbsp;","doi":"10.1021/acs.oprd.4c0054510.1021/acs.oprd.4c00545","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00545https://doi.org/10.1021/acs.oprd.4c00545","url":null,"abstract":"","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 2","pages":"599 599"},"PeriodicalIF":3.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信