Sung Hee Hwang, Karen M. Wagner, Jun Yang, Christophe Morisseau, Debin Wan, James C. Fettinger, Marilyn M. Olmstead, Bruce D. Hammock
{"title":"Coamorphous Solid Dispersion of a Soluble Epoxide Hydrolase Inhibitor t-TUCB with Amino Acid l-Arginine","authors":"Sung Hee Hwang, Karen M. Wagner, Jun Yang, Christophe Morisseau, Debin Wan, James C. Fettinger, Marilyn M. Olmstead, Bruce D. Hammock","doi":"10.1021/acs.oprd.5c00096","DOIUrl":"https://doi.org/10.1021/acs.oprd.5c00096","url":null,"abstract":"Inhibitors of soluble epoxide hydrolase (sEHIs) have been of interest for treating various diseases in humans and animals. Therefore, various sEHIs have been investigated in several clinical trials. Here, we report the development of a coamorphous solid dispersion of an sEHI <i>t</i>-TUCB with the amino acid <span>l</span>-arginine. <i>t</i>-TUCB has a very low aqueous equilibrium solubility (0.031 ± 0.013 μg/mL in pH 6.6 DI water) but possesses free carboxylic acid. Thus, converting <i>t</i>-TUCB to the corresponding sodium salt improved the water solubility (1.2 mg/mL). However, the sodium salt tended to form insoluble <i>t</i>-TUCB sodium salt aggregates, which is problematic for the scale-up of the sodium salt. However, adding <span>l</span>-arginine can deaggregate <i>t</i>-TUCB sodium salt aggregates. Moreover, the basicity of <span>l</span>-arginine allows us to prepare solid dispersion of <i>t</i>-TUCB directly, which forms a coamorphous system. The coamorphous solid dispersion of <i>t</i>-TUCB with <span>l</span>-arginine at a ratio of 1:3 (<i>t</i>-TUCB/Arg (1:3) solid dispersion) not only improved the water solubility (2.2 mg/mL) and dissolution profile (>80% in 10 min) of <i>t</i>-TUCB but also solved the problem of forming insoluble heavy aggregates associated with the sodium salt of <i>t</i>-TUCB. Therefore, the <i>t</i>-TUCB/Arg (1:3) solid dispersion obtained showed 87.1% bioavailability and alleviated LPS-induced pain in rats when orally administered.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"136 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144114425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sung Hee Hwang, Karen M. Wagner, Jun Yang, Christophe Morisseau, Debin Wan, James C. Fettinger, Marilyn M. Olmstead and Bruce D. Hammock*,
{"title":"Coamorphous Solid Dispersion of a Soluble Epoxide Hydrolase Inhibitor t-TUCB with Amino Acid l-Arginine","authors":"Sung Hee Hwang, Karen M. Wagner, Jun Yang, Christophe Morisseau, Debin Wan, James C. Fettinger, Marilyn M. Olmstead and Bruce D. Hammock*, ","doi":"10.1021/acs.oprd.5c0009610.1021/acs.oprd.5c00096","DOIUrl":"https://doi.org/10.1021/acs.oprd.5c00096https://doi.org/10.1021/acs.oprd.5c00096","url":null,"abstract":"<p >Inhibitors of soluble epoxide hydrolase (sEHIs) have been of interest for treating various diseases in humans and animals. Therefore, various sEHIs have been investigated in several clinical trials. Here, we report the development of a coamorphous solid dispersion of an sEHI <i>t</i>-TUCB with the amino acid <span>l</span>-arginine. <i>t</i>-TUCB has a very low aqueous equilibrium solubility (0.031 ± 0.013 μg/mL in pH 6.6 DI water) but possesses free carboxylic acid. Thus, converting <i>t</i>-TUCB to the corresponding sodium salt improved the water solubility (1.2 mg/mL). However, the sodium salt tended to form insoluble <i>t</i>-TUCB sodium salt aggregates, which is problematic for the scale-up of the sodium salt. However, adding <span>l</span>-arginine can deaggregate <i>t</i>-TUCB sodium salt aggregates. Moreover, the basicity of <span>l</span>-arginine allows us to prepare solid dispersion of <i>t</i>-TUCB directly, which forms a coamorphous system. The coamorphous solid dispersion of <i>t</i>-TUCB with <span>l</span>-arginine at a ratio of 1:3 (<i>t</i>-TUCB/Arg (1:3) solid dispersion) not only improved the water solubility (2.2 mg/mL) and dissolution profile (>80% in 10 min) of <i>t</i>-TUCB but also solved the problem of forming insoluble heavy aggregates associated with the sodium salt of <i>t</i>-TUCB. Therefore, the <i>t</i>-TUCB/Arg (1:3) solid dispersion obtained showed 87.1% bioavailability and alleviated LPS-induced pain in rats when orally administered.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 6","pages":"1523–1530 1523–1530"},"PeriodicalIF":3.1,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144320723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perman Jorayev, Sebastian Soritz, Simon Sung, Mohammed I. Jeraal, Danilo Russo, Alexandre Barthelme, Frédéric C. Toussaint, Matthew J. Gaunt, Alexei A. Lapkin
{"title":"Machine Learning-Driven Optimization of Continuous-Flow Photoredox Amine Synthesis","authors":"Perman Jorayev, Sebastian Soritz, Simon Sung, Mohammed I. Jeraal, Danilo Russo, Alexandre Barthelme, Frédéric C. Toussaint, Matthew J. Gaunt, Alexei A. Lapkin","doi":"10.1021/acs.oprd.4c00533","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00533","url":null,"abstract":"Photoredox catalysis plays an important role in the synthesis of pharmaceutically relevant compounds such as C(sp<sup>3</sup>)-rich tertiary amines. The difficulty of identifying underlying mechanistic models for such novel transformations, coupled with the large reaction space of this reaction class, means that developing a robust process is challenging. In this work, we demonstrate the machine learning-driven optimization of a photoredox tertiary amine synthesis with six continuous variables (e.g., concentration, temperature, residence time) and solvent choice as a discrete variable, in a semiautomated continuous flow setup. Starting with a large library of solvents, the workflow included multiple steps of <i>a priori</i> knowledge generation (e.g., solubility predictions) to narrow the discrete space. A novel Bayesian optimization algorithm, nomadic exploratory multiobjective optimization (NEMO), was then deployed to identify and populate the Pareto front for the two reaction objectives─yield and reaction cost. Permutation feature importance and partial dependence plots identified the most important parameters for high yield, sig3, the asymmetry of the s-profile for the discrete space, and equivalences of alkene and Hantzsch ester for the continuous variables. Catalyst loading and residence time were found to be correlated to absorbed photon equivalence, while catalyst loading was additionally the main parameter to drive cost. Even though productivity was not an optimization objective, the best result achieved in flow was ∼25 times higher than reactions in batch, which equals to ∼12 g per day throughput.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"11 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144104020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Manufacturing Process for S-892216 Part I: A Novel Method for Constructing a Multi-Substituted Barbiturate Skeleton for Scalable Synthesis","authors":"Naoto Sahara, Yoichi Hirano, Thien Phuc Le, Katsuya Yamakawa, Eisaku Ohashi, Satoru Shibuya, Kazuo Komano, Keiichiro Hirai, Moriyasu Masui, Go Kato, Takafumi Higuchi, Yuto Shimazaki, Takahiro Kawajiri, Tadashi Oohara, Naoki Tsuno, Takafumi Ohara","doi":"10.1021/acs.oprd.5c00071","DOIUrl":"https://doi.org/10.1021/acs.oprd.5c00071","url":null,"abstract":"S-892216, a second-generation 3CL protease inhibitor, is currently being developed as a clinical drug candidate for the treatment of SARS-CoV-2 infection. This paper outlines the development process and scaling-up of S-892216 for early-phase clinical trials. The developed synthetic route involved a condensation reaction between carboxylic acids and urea with T3P, followed by cyclization in the presence of CDI and DBU to construct a barbiturate core. This novel method facilitated the efficient production of high-quality S-892216 in six steps, with an overall yield of 41.3% from readily available starting materials.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"78 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144114426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Manufacturing Process for S-892216 Part I: A Novel Method for Constructing a Multi-Substituted Barbiturate Skeleton for Scalable Synthesis","authors":"Naoto Sahara*, Yoichi Hirano, Thien Phuc Le, Katsuya Yamakawa, Eisaku Ohashi, Satoru Shibuya, Kazuo Komano, Keiichiro Hirai, Moriyasu Masui, Go Kato, Takafumi Higuchi, Yuto Shimazaki, Takahiro Kawajiri, Tadashi Oohara, Naoki Tsuno and Takafumi Ohara, ","doi":"10.1021/acs.oprd.5c0007110.1021/acs.oprd.5c00071","DOIUrl":"https://doi.org/10.1021/acs.oprd.5c00071https://doi.org/10.1021/acs.oprd.5c00071","url":null,"abstract":"<p >S-892216, a second-generation 3CL protease inhibitor, is currently being developed as a clinical drug candidate for the treatment of SARS-CoV-2 infection. This paper outlines the development process and scaling-up of S-892216 for early-phase clinical trials. The developed synthetic route involved a condensation reaction between carboxylic acids and urea with T3P, followed by cyclization in the presence of CDI and DBU to construct a barbiturate core. This novel method facilitated the efficient production of high-quality S-892216 in six steps, with an overall yield of 41.3% from readily available starting materials.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 6","pages":"1373–1382 1373–1382"},"PeriodicalIF":3.1,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144320633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MicroPhotoGas Reactor: High-Throughput Experimentation for Photoinduced Reactions under a Gas Atmosphere","authors":"Sylvain Foucquart, Taline Kerackian, Géraud Chacktas, Jean-Christophe Cintrat, Eugénie Romero","doi":"10.1021/acs.oprd.5c00118","DOIUrl":"https://doi.org/10.1021/acs.oprd.5c00118","url":null,"abstract":"High-throughput experimentation (HTE) has transformed the exploration of many catalytic processes from a mechanistic and timeline point of view. However, some specific reactions remain impossible to transpose in HTE, mostly because of the lack of dedicated devices. With the development of photoinduced reactions involving gases as reactants, it is of importance to access HTE for such setups. We describe here the design and manufacture of a specific device for miniaturization and parallelization of photoinduced reactions under the pressure of a specific gas atmosphere.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"169 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144104021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MicroPhotoGas Reactor: High-Throughput Experimentation for Photoinduced Reactions under a Gas Atmosphere","authors":"Sylvain Foucquart, Taline Kerackian, Géraud Chacktas, Jean-Christophe Cintrat and Eugénie Romero*, ","doi":"10.1021/acs.oprd.5c0011810.1021/acs.oprd.5c00118","DOIUrl":"https://doi.org/10.1021/acs.oprd.5c00118https://doi.org/10.1021/acs.oprd.5c00118","url":null,"abstract":"<p >High-throughput experimentation (HTE) has transformed the exploration of many catalytic processes from a mechanistic and timeline point of view. However, some specific reactions remain impossible to transpose in HTE, mostly because of the lack of dedicated devices. With the development of photoinduced reactions involving gases as reactants, it is of importance to access HTE for such setups. We describe here the design and manufacture of a specific device for miniaturization and parallelization of photoinduced reactions under the pressure of a specific gas atmosphere.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 6","pages":"1593–1600 1593–1600"},"PeriodicalIF":3.1,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144320568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Márk Molnár, Tamás Fődi, János Tatai, Vilibald Kun, Barbara Balázs, Tamás Gáti, Gergő Dargó and Miklós Nyerges*,
{"title":"","authors":"Márk Molnár, Tamás Fődi, János Tatai, Vilibald Kun, Barbara Balázs, Tamás Gáti, Gergő Dargó and Miklós Nyerges*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.1,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.4c00534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144445267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martina Bigatti, André Moser, Bas Dierssen, Shtjefen Frrokaj, Elena Covato, Christophe Pfleger, Joerg Lill, Yael Leiser, Joël Zuber, Andreas Staempfli, Filippo Sladojevich* and Stefan G. Koenig*,
{"title":"","authors":"Martina Bigatti, André Moser, Bas Dierssen, Shtjefen Frrokaj, Elena Covato, Christophe Pfleger, Joerg Lill, Yael Leiser, Joël Zuber, Andreas Staempfli, Filippo Sladojevich* and Stefan G. Koenig*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.1,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.4c00502","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144445274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helena Leuser*, Subhash Pithani, Staffan Karlsson, Carl-Johan Aurell, Marcus Malmgren, Per-Ola Norrby and Okky D. Putra,
{"title":"","authors":"Helena Leuser*, Subhash Pithani, Staffan Karlsson, Carl-Johan Aurell, Marcus Malmgren, Per-Ola Norrby and Okky D. Putra, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 5","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.1,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.oprd.4c00541","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144445270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}