Augustin Villotet, Anne-Laure Revelli, Pierre-Georges Echeverria* and Clément Jacob*,
{"title":"TCCA-Mediated Oxidative Deprotection of a Benzylamine","authors":"Augustin Villotet, Anne-Laure Revelli, Pierre-Georges Echeverria* and Clément Jacob*, ","doi":"10.1021/acs.oprd.5c00130","DOIUrl":null,"url":null,"abstract":"<p >Benzyl-protected amines are mainly deprotected on scale using palladium-catalyzed hydrogenolysis. The present study evaluates a metal and hydrogen-free alternative based on the amine moiety oxidation to provide the corresponding imine via halogenation. It has been observed on a model substrate that inexpensive and nontoxic trichloroisocyanuric acid (TCCA) proved highly efficient as the oxidant before a simple base could readily deliver the desired imine to be hydrolyzed. A safety assessment of the process was further carried out and showed no specific alert regarding the chloramine intermediate formation.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"29 8","pages":"2070–2075"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.5c00130","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Benzyl-protected amines are mainly deprotected on scale using palladium-catalyzed hydrogenolysis. The present study evaluates a metal and hydrogen-free alternative based on the amine moiety oxidation to provide the corresponding imine via halogenation. It has been observed on a model substrate that inexpensive and nontoxic trichloroisocyanuric acid (TCCA) proved highly efficient as the oxidant before a simple base could readily deliver the desired imine to be hydrolyzed. A safety assessment of the process was further carried out and showed no specific alert regarding the chloramine intermediate formation.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.