Ad Hoc Networks最新文献

筛选
英文 中文
TAVA: Traceable anonymity-self-controllable V2X Authentication over dynamic multiple charging-service providers TAVA:动态多充电服务提供商上的可追踪匿名-自控 V2X 验证
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-09-14 DOI: 10.1016/j.adhoc.2024.103666
{"title":"TAVA: Traceable anonymity-self-controllable V2X Authentication over dynamic multiple charging-service providers","authors":"","doi":"10.1016/j.adhoc.2024.103666","DOIUrl":"10.1016/j.adhoc.2024.103666","url":null,"abstract":"<div><p>The widespread deployment of Electric vehicles (EVs) leads to an increasing demand for charging piles and corresponding charging service (CS) from CS providers (CSPs). Pseudonym-based authentication mechanisms have been designed to resist the attacks which exploit the charging-authentication information to infer EV users’ identities and their driving routes. However, these existing mechanisms generated EV users' pseudonyms by relying on a trusted third entity, which affects the authentication system's resilience and EV user privacy-preservation.</p><p>To this end, this paper proposes a <em>T</em>raceable <em>A</em>nonymity-self-controllable <em>V</em>2X <em>A</em>uthentication (TAVA) scheme for the multiple-CSP (forming a CSP set) scenario, where each CSP independently manages its own CPs and a CSP randomly joins or leaves the CSP set. TAVA has a series of security capabilities. (1) First, it allows the mutual authentication between an EV user and a CP, while preserving EV user privacy and also assuring forward and backward security. This capability is achieved by using the multi-party computation technique to let all CSPs join the process of generating EV-users’ credentials but each CSP knows nothing about the credentials. (2) Secondly, TAVA has the capabilities of self-controllable anonymity and unlinkability by allowing each EV user to self-generate verifiable and unlinkable one-time pseudonyms based on bilinear- mapping technique. (3) At last, each EV user under TAVA is traceable. It is achieved by applying the two-factor authentication technique in TAVA and linking the one-time pseudonym to the two factors, namely, the credential and the EV user's biometric characteristics with low entropy rates. Note that all these security capabilities are achieved with less performance degradation in terms of communication and storage overheads in the dynamic environment. We conduct the informal and formal analysis of security capabilities and also make performance evaluations. The results indicate that, compared with the latest works, the computation overhead of the mutual authentication in TAVA is reduced by up to 89 %.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RL-based mobile edge computing scheme for high reliability low latency services in UAV-aided IIoT networks 基于 RL 的移动边缘计算方案,为无人机辅助的 IIoT 网络提供高可靠性低延迟服务
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-09-12 DOI: 10.1016/j.adhoc.2024.103646
{"title":"RL-based mobile edge computing scheme for high reliability low latency services in UAV-aided IIoT networks","authors":"","doi":"10.1016/j.adhoc.2024.103646","DOIUrl":"10.1016/j.adhoc.2024.103646","url":null,"abstract":"<div><p>The prevailing adoption of Internet of Things paradigm is giving rise to a wide range of use cases in various vertical industries including remote health, industrial automation, and smart agriculture. However, the realization of such use cases is mainly challenged due to their stringent service requirements of high reliability and low latency. This challenge grows further when the service entails processing collected data for informed decision making. In this work, we consider a field of industrial Internet of Things devices that generate computational tasks and are covered by a nearby base station equipped with an edge server. The edge server offers fast processing to the devices’ tasks to help in meeting their latency requirement. Due to statistical wireless variability, the task data may not be correctly delivered in time for processing. To this end, we utilize an unmanned aerial vehicle as a supplemental edge server that tailors its trajectory and flies closer to the IIoT devices to ensure a highly reliable task delivery based on the given task reliability constraints. We formulate the problem as a Markov Decision Process, and propose a deep reinforcement learning-based approach using proximal policy optimization to optimize the unmanned aerial vehicle trajectory and scheduling devices to offload their data for processing. We present simulation results for various system scenarios to illustrate the effectiveness of the proposed solution as compared to several baseline approaches.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PLLM-CS: Pre-trained Large Language Model (LLM) for cyber threat detection in satellite networks PLLM-CS:用于卫星网络网络威胁检测的预训练大型语言模型(LLM)
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-09-11 DOI: 10.1016/j.adhoc.2024.103645
{"title":"PLLM-CS: Pre-trained Large Language Model (LLM) for cyber threat detection in satellite networks","authors":"","doi":"10.1016/j.adhoc.2024.103645","DOIUrl":"10.1016/j.adhoc.2024.103645","url":null,"abstract":"<div><p>Satellite networks are vital in facilitating communication services for various critical infrastructures. These networks can seamlessly integrate with a diverse array of systems. However, some of these systems are vulnerable due to the absence of effective intrusion detection systems, which can be attributed to limited research and the high costs associated with deploying, fine-tuning, monitoring, and responding to security breaches. To address these challenges, we propose a pre-trained Large Language Model for Cyber Security, for short PLLM-CS, which is a variant of pre-trained Transformers, which includes a specialized module for transforming network data into contextually suitable inputs. This transformation enables the proposed LLM to encode contextual information within the cyber data. To validate the efficacy of the proposed method, we conducted empirical experiments using two publicly available network datasets, UNSW_NB 15 and TON_IoT, both providing Internet of Things (IoT)-based traffic data. Our experiments demonstrate that proposed LLM method outperforms state-of-the-art techniques such as BiLSTM, GRU, and CNN. Notably, the PLLM-CS method achieves an outstanding accuracy level of 100% on the UNSW_NB 15 dataset, setting a new standard for benchmark performance in this domain.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A two-context-aware approach for navigation: A case study for vehicular route recommendation 双情境感知导航方法:车辆路线推荐案例研究
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-09-10 DOI: 10.1016/j.adhoc.2024.103655
{"title":"A two-context-aware approach for navigation: A case study for vehicular route recommendation","authors":"","doi":"10.1016/j.adhoc.2024.103655","DOIUrl":"10.1016/j.adhoc.2024.103655","url":null,"abstract":"<div><p>In contemporary urban environments, route recommendation systems have become an indispensable tool in moving the population from large centers, serving as valuable resources for circumventing traffic congestion. Enhancing vehicular traffic flow through strategic route adjustments is a pivotal element in improving traffic mobility. However, depending exclusively on traffic-related data for route recommendations fails to meet the essential criteria for ensuring effective management and safety for drivers and passengers during travel. Thus, context awareness and traffic data are crucial for enhancing efficiency and safety in traffic management. Our study proposes a two-context-aware approach to recommend safe routes for urban traffic management, considering road safety and travel time. Experiments were carried out using the widely recognized tool — HERE Navigation. Comparatively, our approach signifies a progressive stride in balancing mobility and security when contrasted with a single focus on travel time.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S157087052400266X/pdfft?md5=a85e68699e4c9d590fd509b0f69d7794&pid=1-s2.0-S157087052400266X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A joint optimization of resource allocation management and multi-task offloading in high-mobility vehicular multi-access edge computing networks 高移动性车载多接入边缘计算网络中资源分配管理和多任务卸载的联合优化
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-09-06 DOI: 10.1016/j.adhoc.2024.103656
{"title":"A joint optimization of resource allocation management and multi-task offloading in high-mobility vehicular multi-access edge computing networks","authors":"","doi":"10.1016/j.adhoc.2024.103656","DOIUrl":"10.1016/j.adhoc.2024.103656","url":null,"abstract":"<div><p>Vehicular communications have advanced data exchange and real-time services in intelligent transportation systems by exploiting advanced communication between vehicles and infrastructure. The emergence of Multi-access Edge Computing (MEC) has further elevated this field by utilizing distributed edge resources near vehicles for low-latency data processing and high-reliability communication. In this dynamic environment, adequate resource allocation and task offloading are pivotal to ensure superior performance, lower latency, and efficient network resource utilization, enhancing Quality of Service (QoS) and overall driving experience and safety. This paper presents a developed vehicular network and offloading mechanism, introducing a resource management model with real-time allocation and load balancing. The proposed method integrates task prioritization, multi-agent collaboration, context-aware decision-making, and distributed learning to optimize network performance. The introduced optimized algorithm initializes Q-networks and target networks, sets up an experience replay buffer, and configures agents with local state representations. Agents use an ε-greedy policy for action selection, update Q-values through experience replay, and prioritize tasks based on urgency while sharing state information for collaborative decision-making. Evaluations through simulation demonstrate optimized performance, enhancing efficiency in vehicular MEC networks compared to baseline and the other well-known algorithms.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-domain gesture recognition via WiFi signals with deep learning 利用深度学习通过 WiFi 信号进行跨域手势识别
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-09-05 DOI: 10.1016/j.adhoc.2024.103654
{"title":"Cross-domain gesture recognition via WiFi signals with deep learning","authors":"","doi":"10.1016/j.adhoc.2024.103654","DOIUrl":"10.1016/j.adhoc.2024.103654","url":null,"abstract":"<div><p>Compared with systems rely on wearable sensors, cameras or other devices, WiFi-based gesture recognition systems are convenient, non-contact and privacy-friendly, which have received widespread attention in recent years. In WiFi-based gesture recognition systems, the channel state information (CSI) carried by WiFi signals contains fine-grained information, which is commonly used to extract features of gesture activities. However, since the CSI patterns of the same gesture change across domains, these gesture recognition systems cannot effectively work without retraining in new domains, which will hinder the practical adoption of gesture recognition systems. Therefore, we propose a novel gesture recognition system that can address the issue of cross-domain recognition while achieving higher recognition accuracy for in-domain scenarios. Firstly, we employ CSI ratio and subcarrier selection to effectively eliminate noise from the CSI, and propose a method to reconstruct CSI sequence using low-frequency signals, which can effectively remove irrelevant noise in the high-frequency part and ensure the validity of the data. Next, we calculate the phase difference to explore the intrinsic features of gesture and convert the obtained data into RGB image. Finally, we use Dense Convolutional Network as backbone network, combined with dynamic convolution module, for RGB image recognition. Extensive experiments demonstrate that our proposed system can achieve 99.58% in-domain gesture recognition, and its performance across new person and orientations is 99.15% and 98.31%, respectively.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vehicular edge cloud computing content caching optimization solution based on content prediction and deep reinforcement learning 基于内容预测和深度强化学习的车载边缘云计算内容缓存优化解决方案
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-09-03 DOI: 10.1016/j.adhoc.2024.103643
{"title":"Vehicular edge cloud computing content caching optimization solution based on content prediction and deep reinforcement learning","authors":"","doi":"10.1016/j.adhoc.2024.103643","DOIUrl":"10.1016/j.adhoc.2024.103643","url":null,"abstract":"<div><p>In conventional studies on vehicular edge computing, researchers frequently overlook the high-speed mobility of vehicles and the dynamic nature of the vehicular edge environment. Moreover, when employing deep reinforcement learning to address vehicular edge challenges, insufficient attention is given to the potential issue of the algorithm converging to a local optimal solution. This paper presents a content caching solution tailored for vehicular edge cloud computing, integrating content prediction and deep reinforcement learning techniques. Given the swift mobility of vehicles and the ever-changing nature of the vehicular edge environment, the study proposes a content prediction model based on Informer. Leveraging the Informer prediction model, the system anticipates the vehicular edge environment dynamics, thereby informing the caching of vehicle task content. Acknowledging the diverse time scales involved in policy decisions such as content updating, vehicle scheduling, and bandwidth allocation, the paper advocates a dual time-scale Markov modeling approach. Moreover, to address the local optimality issue inherent in the A3C algorithm, an enhanced A3C algorithm is introduced, incorporating an <span><math><mi>ɛ</mi></math></span>-greedy strategy to promote exploration. Recognizing the potential limitations posed by a fixed exploration rate <span><math><mi>ɛ</mi></math></span>, a dynamic baseline mechanism is proposed for updating <span><math><mi>ɛ</mi></math></span> dynamically. Experimental findings demonstrate that compared to alternative content caching approaches, the proposed vehicle edge computing content caching solution substantially mitigates content access costs. To support research in this area, we have publicly released the source code and pre-trained models at <span><span>https://github.com/JYAyyyyyy/Informer.git</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blockchain and Quantum Machine Learning Driven Energy Trading for Electric Vehicles 区块链和量子机器学习驱动的电动汽车能源交易
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-09-03 DOI: 10.1016/j.adhoc.2024.103632
{"title":"Blockchain and Quantum Machine Learning Driven Energy Trading for Electric Vehicles","authors":"","doi":"10.1016/j.adhoc.2024.103632","DOIUrl":"10.1016/j.adhoc.2024.103632","url":null,"abstract":"<div><p>With the steep growth of Electric Vehicles (EV's), the consequent demand of energy for charging puts significant load to powergrids. Renewable Energy Sources enabled microgrids can alleviate the problem of energy demand and trade the energy locally in Peer-to-Peer (P2P) manner, where seller (microgrid) and buyer (EV's) “meet” to trade electricity directly on agreed term without any intermediary. However, a foolproof system required for audit and verification of transaction record between seller and buyer to address privacy and security in untrusted and opaque local energy trading market (LETM). Centralized public blockchain enabled system (for audit the transaction records and storage) based on conventional learning models faces mainly two issues in the LETM. (a) if, centralize system runs out of energy and tear down then whole energy trading plunges treated as single point of failure (b) Conventional learning models fail to converge optimal point in case of large state and action space (large number of EV's and their energy demand). The primary objective of this paper to provide secure system for LETM, 1) Distributed nature of Consortium Blockchain used that solve the problem of single point of failure to audit and storage of transaction and profile info of microgrids and EV's. 2) Quantum based Reinforcement Learning (QRL) easily handles the large number of EV's energy supply and demand for smoothly run LETM. In this context, this paper presents Blockchain and Quantum Machine Learning driven energy trading model for EVs (B-MET). A utility maximization problem formulated as Markov Decision Process (MDP) and their solution provided by using QRL focusing on join optimization of selling price, loan amount and quantity of shared energy. MDP is a mathematical framework used to model decision-making in situations where outcomes are partly random and partly under the control of a decision-maker, i.e., the future state depends only on the current state and action, not on the sequence of events that preceded it. QRL method combines quantum theory with traditional RL. It is inspire by the principles of state superposition and quantum parallelism. Convergence analysis and performance results attest that B-MET convergences faster, maximizes the utility with lower confirmation delay in P2P energy trading as compare to state of the art techniques.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THz band drone communications with practical antennas: Performance under realistic mobility and misalignment scenarios 采用实用天线的太赫兹波段无人机通信:实际移动和错位情况下的性能
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-09-02 DOI: 10.1016/j.adhoc.2024.103644
{"title":"THz band drone communications with practical antennas: Performance under realistic mobility and misalignment scenarios","authors":"","doi":"10.1016/j.adhoc.2024.103644","DOIUrl":"10.1016/j.adhoc.2024.103644","url":null,"abstract":"<div><p>For 6G non-terrestrial communications, drones will offer uninterrupted connectivity for surveillance, sensing, and localization. They will also serve as drone base stations to support terrestrial base stations, providing large bandwidth, high-rate, and ultra-reliable low latency services. In this paper, for the first time in the literature, we depict the true performance of Terahertz (THz) band communications among drones by applying various channel selection and power allocation schemes with practical THz antennas within (0.75–4.4) THz under realistic mobility and misalignment scenarios. Through numerical simulations, we unveil the capacity of drone links under different channel selection and power allocation schemes within 10s to 100s of Gbps at distances (1–100) m, when drones are in motion and subject to (mis)alignment due to mobility and even under beam misalignment fading. However, when exposed to real drone mobility traces, the performance of all channel selection schemes drops significantly, sometimes by up to six orders of magnitude, due to the occasional reverse orientations of antennas. In addition to the capacity analysis, we report available frequency bands (transmission windows) considering all schemes and mobility patterns. We also identify a band that is commonly available under all considered mobility and misalignment settings, and we evaluate its performance in terms of spectral and energy efficiencies, which can be useful in designing THz transceivers for drone communications. Our findings emphasize the essence of active beam control solutions to achieve the desired capacity potential of THz drone communications, while also highlighting the challenges of utilizing the THz band for drone communications.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Load-adaptive MAC protocol for frontier detection in Underwater Mobile Sensor Network 用于水下移动传感器网络前沿检测的负载自适应 MAC 协议
IF 4.4 3区 计算机科学
Ad Hoc Networks Pub Date : 2024-08-31 DOI: 10.1016/j.adhoc.2024.103641
{"title":"Load-adaptive MAC protocol for frontier detection in Underwater Mobile Sensor Network","authors":"","doi":"10.1016/j.adhoc.2024.103641","DOIUrl":"10.1016/j.adhoc.2024.103641","url":null,"abstract":"<div><p>This work proposes a load-adaptive Medium Access Control (MAC) protocol for the frontier/boundary detection application of underwater phenomena using Underwater Mobile Sensor Network (UWMSN). A leader-follower architecture of a swarm of underwater vehicles is proposed here. Autonomous Underwater Vehicles (AUVs) traverse a random mobility pattern beneath one Autonomous Surface Vehicle (ASV) (leader) in the proposed network. ASV has to guide multiple-follower AUVs in the event of interest. The vehicular swarm aims to explore the frontiers in the event to build the map. Load-adaptive MAC protocol is therefore proposed and implemented in this hybrid multi-vehicular network to ensure seamless vehicular communications. The ASV has navigational capabilities to aid the AUVs in navigation and data collection. The proposed MAC protocol can adjust the dynamic mobility and load in the network. The protocol aims to provide dynamic Time Division Multiple Access (TDMA) slots for the AUVs wirelessly linked in the vicinity of the ASV. These slots are used for ranging/navigation and data transmission. Additional urgent data from any AUVs can be transmitted in open Carrier Sense Multiple Access (CSMA) protocol following the TDMA duration. Results have been generated by comparing protocols like CSMA, ALOHA, and TDMA with the proposed Load-Adaptive MAC protocol. The protocols have been compared to the throughput vs number of nodes and throughput vs simulation time. It has been observed that the proposed MAC can perform better than ALOHA and CSMA protocols. Nevertheless, it can produce comparable results for TDMA protocol while supporting the dynamic mobility and load in the network meantime supporting urgent data transmission for nodes in demand.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信