{"title":"An innovative multi-agent approach for robust cyber–physical systems using vertical federated learning","authors":"Shivani Gaba , Ishan Budhiraja , Vimal Kumar , Sahil Garg , Mohammad Mehedi Hassan","doi":"10.1016/j.adhoc.2024.103578","DOIUrl":"https://doi.org/10.1016/j.adhoc.2024.103578","url":null,"abstract":"<div><p>Federated learning presents a compelling approach to training artificial intelligence systems in decentralized settings, prioritizing data safety over traditional centralized training methods. Understanding correlations among higher-level threats exhibiting abnormal behavior in the data stream becomes paramount to developing cyber–physical systems resilient to diverse attacks within a continuous data exchange framework. This work introduces a novel vertical federated multi-agent learning framework to address the challenges of modeling attacker and defender agents in stationary and non-stationary vertical federated learning environments. Our approach uniquely applies synchronous Deep Q-Network (DQN) based agents in stationary environments, facilitating convergence towards optimal strategies. Conversely, in non-stationary contexts, we employ synchronous Advantage Actor–Critic (A2C) based agents, adapting to the dynamic nature of multi-agent vertical federated reinforcement learning (VFRL) environments. This methodology enables us to simulate and analyze the adversarial interplay between attacker and defender agents, ensuring robust policy development. Our exhaustive analysis demonstrates the effectiveness of our approach, showcasing its capability to learn optimal policies in both static and dynamic setups, thus significantly advancing the field of cyber-security in federated learning contexts. To evaluate the effectiveness of our approach, we have done a comparative analysis with its baseline schemes. The findings of our study show significant enhancements compared to the standard methods, confirming the efficacy of our methodology. This progress dramatically enhances the area of cyber-security in the context of federated learning by facilitating the formulation of substantial policies. The proposed scheme attains 15.93%, 32.91%, 31.02%, and 47.26% higher results as compared to the A3C, DDQN, DQN, and Reinforce, respectively.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103578"},"PeriodicalIF":4.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ad Hoc NetworksPub Date : 2024-06-26DOI: 10.1016/j.adhoc.2024.103585
Juan Pablo Astudillo León , Anthony Busson , Luis J. de la Cruz Llopis , Thomas Begin , Azzedine Boukerche
{"title":"Strategic deployment of RSUs in urban settings: Optimizing IEEE 802.11p infrastructure","authors":"Juan Pablo Astudillo León , Anthony Busson , Luis J. de la Cruz Llopis , Thomas Begin , Azzedine Boukerche","doi":"10.1016/j.adhoc.2024.103585","DOIUrl":"https://doi.org/10.1016/j.adhoc.2024.103585","url":null,"abstract":"<div><p>The efficient deployment of Roadside Units (RSUs) in an infrastructure based on IEEE 802.11p is essential for delivering Internet-based services to vehicles. In this paper, we introduce novel strategies that, in contrast to prior works, exclusively rely on the average vehicular density within specific urban areas, and these strategies depend on a performance model of IEEE 802.11p for guidance and decision-making regarding RSU placement. This minimal upfront information contributes to the practicality and ease of implementation of our strategies. We apply our strategies to three real-world urban scenarios, utilizing the ns-3 and <span>sumo</span> simulators for validation. This study contributes to three fundamental aspects. First, we establish that any efficient deployment of RSUs is closely linked to the unique characteristics of the city under consideration such as the street layout and spatial density of vehicles. In other words, the characteristics of an efficient RSU deployment are unique to each city. Second, we show that the optimal strategy is not to place the RSUs at the locations with the highest traffic density. Instead, with the help of an analytical performance model of IEEE 802.11, we propose a more efficient strategy wherein the location of each RSU is determined to maximize the number of vehicles receiving the target QoS. This can lead to a significant drop in the number of RSUs required to equip a city. Finally, we demonstrate that, by preventing the use of the lowest transmission rate of IEEE 802.11p at each RSU, a collective benefit can be achieved, even though each RSU experiences a shorter radio range.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103585"},"PeriodicalIF":4.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141486944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ad Hoc NetworksPub Date : 2024-06-25DOI: 10.1016/j.adhoc.2024.103588
Zetian Zhang , Jingyu Wang , Lixin Liu , Yongfeng Li , Yun Hao , Hanqing Yang
{"title":"Anonymous data sharing scheme for resource-constrained internet of things environments","authors":"Zetian Zhang , Jingyu Wang , Lixin Liu , Yongfeng Li , Yun Hao , Hanqing Yang","doi":"10.1016/j.adhoc.2024.103588","DOIUrl":"https://doi.org/10.1016/j.adhoc.2024.103588","url":null,"abstract":"<div><p>With the rapid development of Internet of Things (IoT) technology in industrial, agricultural, medical and other fields, IoT terminal devices face security and privacy challenges when sharing data. Among them, ensuring data confidentiality, achieving dual-side privacy protection, and performing reliable data integrity verification are basic requirements. Especially in resource-constrained environments, limitations in the storage, computing, and communication capabilities of devices increase the difficulty of implementing these security safeguards. To address this problem, this paper proposes a resource-constrained anonymous data-sharing scheme (ADS-RC) for the IoT. In ADS-RC, we use elliptic curve operations to replace computation-intensive bilinear pairing operations, thereby reducing the computational and communication burden on end devices. We combine an anonymous verifiable algorithm and an attribute encryption algorithm to ensure double anonymity and data confidentiality during the data-sharing process. To deal with potential dishonest behavior, this solution supports the revocation of malicious user permissions. In addition, we designed a batch data integrity verification algorithm and stored verification evidence on the blockchain to ensure the security and traceability of data during transmission and storage. Through experimental verification, the ADS-RC scheme achieves reasonable efficiency in correctness, security and efficiency, providing a new solution for data sharing in resource-constrained IoT environments.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103588"},"PeriodicalIF":4.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing longevity: Sustainable channel modeling for wireless-powered implantable BANs","authors":"Sameeksha Chaudhary , Anirudh Agarwal , Deepak Mishra , Santosh Shah","doi":"10.1016/j.adhoc.2024.103584","DOIUrl":"https://doi.org/10.1016/j.adhoc.2024.103584","url":null,"abstract":"<div><p>Wireless body area network (WBAN) has revolutionized the healthcare sector by enabling remote monitoring and control of wearable and implantable devices, providing freedom of mobility to patients. However, wireless channel modeling in BAN is a crucial aspect for designing an efficient off-body, on-body and in-body communication. Due to the unique characteristics of the human body, it aims to characterize the signal propagation through skin, tissues, internal organs and biological fluids of a patient’s body. Moreover, it is important to enhance the battery life of the low-powered devices for a sustainable BAN. In this work, we provide a hybrid communication channel model for wireless power transfer in a BAN including both off-body and in-body communication channels. An indoor room scenario is considered in which a movable patient having an implant inside its body is present along with an RF power source (for example, a Wi-Fi access point) situated in a ceiling corner. Implant is assumed to inhibit energy harvesting capability. For practicability, we have considered the effect of path loss, partition walls, floor attenuation factor along with other important body parameters. Specifically, we aim to statistically characterize this hybrid communication system, for which unique closed-form expressions of the probability distribution functions of the received power have been derived, thereby first calculating the instantaneous power at different layers of human body and then obtaining the closed-form expression for average received power. All the derived mathematical expressions have been verified via numerical simulations. Further, for elongating the lifespan of implants, we investigated the average power harvested by an implant and its power outage probability for analyzing the sustainability of implants. The results are numerically validated, considering different types of indoor room scenarios, in addition to providing key design insights.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103584"},"PeriodicalIF":4.4,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141486943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ad Hoc NetworksPub Date : 2024-06-24DOI: 10.1016/j.adhoc.2024.103583
Leonardo Badia , Alberto Zancanaro , Giulia Cisotto , Andrea Munari
{"title":"Status update scheduling in remote sensing under variable activation and propagation delays","authors":"Leonardo Badia , Alberto Zancanaro , Giulia Cisotto , Andrea Munari","doi":"10.1016/j.adhoc.2024.103583","DOIUrl":"https://doi.org/10.1016/j.adhoc.2024.103583","url":null,"abstract":"<div><p>Sensor data exchanges in IoT applications can experience a variable delay due to changes in the communication environment and sharing of processing capabilities. This variability can impact the performance and effectiveness of the systems being controlled, and is especially reflected on Age of Information (AoI), a performance metric that quantifies the freshness of updates in remote sensing. In this work, we discuss the quantitative impact of activation and propagation delays, both taken as random variables, on AoI. In our analysis we consider an offline scheduling over a finite horizon, we derive a closed form solution to evaluate the average AoI, and we validate our results through numerical simulation. We also provide further analysis on which type of delay has more influence on the system, as well as the probability that the system fails to deliver all the scheduled updates due to excessive delays of either kind.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103583"},"PeriodicalIF":4.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ad Hoc NetworksPub Date : 2024-06-19DOI: 10.1016/j.adhoc.2024.103582
Fuxin Zhang, Guangping Wang
{"title":"Context-aware resource allocation for vehicle-to-vehicle communications in cellular-V2X networks","authors":"Fuxin Zhang, Guangping Wang","doi":"10.1016/j.adhoc.2024.103582","DOIUrl":"https://doi.org/10.1016/j.adhoc.2024.103582","url":null,"abstract":"<div><p>Cellular Vehicle-to-Everything (C-V2X) networks provide critical support for intelligently connected vehicles (ICVs) and intelligent transport systems (ITS). C-V2X utilizes vehicle-to-vehicle (V2V) communication technology to exchange safety–critical information among neighbors. V2V communication has stringent high-reliability and low-latency requirements. The existing solutions on resource allocation for V2V communications mainly rely on channel states to optimize resource utilization but fail to consider vehicle safety requirements, which cannot satisfy safety application performance. In this paper, we focus on application-driven channel resource allocation strategy for V2V communications. First, we propose an inter-packet reception model to represent the delay between two consecutive and successful reception packets at a receiver. We then design an application-specific utility function where the utility depends on the packet reception performance and vehicle safety context. Finally, we formulate the channel resource allocation problem as a non-cooperative game model. The game model can guide each node to cooperate and achieve the trade-off between fairness and efficiency in channel resource allocation. The simulation results show that our work can significantly improve the reliability of V2V communications and guarantee the vehicle safety application performance.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103582"},"PeriodicalIF":4.4,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ad Hoc NetworksPub Date : 2024-06-18DOI: 10.1016/j.adhoc.2024.103580
Xiaoyan Zhao, Ming Li, Peiyan Yuan
{"title":"An online energy-saving offloading algorithm in mobile edge computing with Lyapunov optimization","authors":"Xiaoyan Zhao, Ming Li, Peiyan Yuan","doi":"10.1016/j.adhoc.2024.103580","DOIUrl":"https://doi.org/10.1016/j.adhoc.2024.103580","url":null,"abstract":"<div><p>Online computing offloading is an effective method to enhance the performance of mobile edge computing (MEC). However, existing research ignores the impact of system stability and device priority on system performance during task processing.To address the problem of computing offloading for computing-intensive tasks, an online partial offloading algorithm combining task queue length and energy consumption is proposed without any prior information. Firstly, a queue model of IoT devices is created to describe their workload backlogs and reflect the system stability. Then, using Lyapunov optimization, computing offloading problem is decoupled into two sub-problems by calculating the optimal CPU computing rate and device priority, which can determine the task offloading amount and offloading location to complete resource allocation. Finally, the online partial offloading algorithm based on devices priority is solved by minimizing the value of the drift-plus-penalty function’s upper bound to ensure system stability and reduce energy consumption. Theoretical analysis and the outcomes of numerous experiments demonstrate the effectiveness of the proposed algorithm in minimizing system energy consumption while adhering to system constraints, even in dealing with dynamically varying task arrival rates.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103580"},"PeriodicalIF":4.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ad Hoc NetworksPub Date : 2024-06-18DOI: 10.1016/j.adhoc.2024.103581
Anselme R. Affane M., Hassan Satori
{"title":"Machine learning attack detection based-on stochastic classifier methods for enhancing of routing security in wireless sensor networks","authors":"Anselme R. Affane M., Hassan Satori","doi":"10.1016/j.adhoc.2024.103581","DOIUrl":"https://doi.org/10.1016/j.adhoc.2024.103581","url":null,"abstract":"<div><p>Wireless Sensor Networks (WSNs) are vulnerable to attacks during data transmission, and many techniques have been proposed to detect and secure routing data. In this paper, we introduce a novel stochastic predictive machine learning approach designed to discern untrustworthy events and unreliable routing attributes, aiming to establish an artificial intelligence-based attack detection system for WSNs. Our methodology leverages real-time analysis of the features of simulated WSN routing data. By integrating Hidden Markov Models (HMM) with Gaussian Mixture Models (GMM), we develop a robust classification framework. This framework effectively identifies outliers, pinpoints malicious network behaviors from their origins, and categorizes them as either trusted or untrusted network activities. In addition, dimensionality reduction techniques are used to improve interpretability, reduce computation and processing time, extract uncorrelated features from network data, and optimize performances. The main advantage of our approach is to establish an efficient stochastic machine learning method capable of analyzing and filtering WSN traffic to prevent suspicious and unsafe data, reduce the large dissimilarity in the collected routing features, and rapidly detect attacks before they occur. In this work, we exploit a well-tuned data set that provides a lot of routing information without losing any data. The experimental results show that the proposed stochastic attack detection system can effectively identify and categorize anomalies in wireless sensor networks with high accuracy. The classification rates of the system were found to be around 83.65%, 84.94% and 94.55%, which is significantly better than the existing classification approaches. Furthermore, the proposed system showed a positive prediction value of 11.84% higher than the existing approaches.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103581"},"PeriodicalIF":4.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative study of novel packet loss analysis and recovery capability between hybrid TLI-µTESLA and other variant TESLA protocols","authors":"Khouloud Eledlebi , Ahmed Alzubaidi , Ernesto Damiani , Victor Mateu , Yousof Al-Hammadi , Deepak Puthal , Chan Yeob Yeun","doi":"10.1016/j.adhoc.2024.103579","DOIUrl":"https://doi.org/10.1016/j.adhoc.2024.103579","url":null,"abstract":"<div><p>Analyzing packet loss, whether resulting from communication challenges or malicious attacks, is vital for broadcast authentication protocols. It ensures legitimate and continuous authentication across networks. While previous studies have mainly focused on countering Denial of Service (DoS) attacks' impact on packet loss, our research introduces an innovative investigation into packet loss and develops data recovery within variant TESLA protocols. We highlight the efficacy of our proposed hybrid TLI-µTESLA protocol in maintaining continuous and robust connections among network members, while maximizing data recovery in adverse communication conditions. The study examines the unique packet structures associated with each TESLA protocol variant, emphasizing the implications of losing each type on the network performance. We also introduce modifications to variant TESLA protocols to improve data recovery and alleviate the effects of packet loss. Using Java programming language, we conducted simulation analyses that illustrate the adaptability of variant TESLA protocols in recovering lost packet keys and authenticating previously buffered packets, all while maintaining continuous and robust authentication between network members. Our findings also underscore the superiority of the hybrid TLI-µTESLA protocol in terms of packet loss performance and data recovery, alongside its robust cybersecurity features, including confidentiality, integrity, availability, and accessibility. Additionally, we demonstrated the efficiency of our proposed protocol in terms of low computational and communication requirements compared to earlier TESLA protocol variants, as outlined in previous publications.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103579"},"PeriodicalIF":4.4,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141434833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ad Hoc NetworksPub Date : 2024-06-13DOI: 10.1016/j.adhoc.2024.103576
Jawad Hassan , Adnan Sohail , Ali Ismail Awad , M. Ahmed Zaka
{"title":"LETM-IoT: A lightweight and efficient trust mechanism for Sybil attacks in Internet of Things networks","authors":"Jawad Hassan , Adnan Sohail , Ali Ismail Awad , M. Ahmed Zaka","doi":"10.1016/j.adhoc.2024.103576","DOIUrl":"10.1016/j.adhoc.2024.103576","url":null,"abstract":"<div><p>The Internet of Things (IoT) has recently gained significance as a means of connecting various physical devices to the Internet, enabling various innovative applications. However, the security of IoT networks is a significant concern due to the large volume of data generated and transmitted over them. The limited resources of IoT devices, along with their mobility and diverse characteristics, pose significant challenges for maintaining security in routing protocols, such as the Routing Protocol for Low-Power and Lossy Networks (RPL). This lacks effective defense mechanisms against routing attacks, including Sybil and rank attacks. Various techniques have been proposed to address this issue, including cryptography and intrusion-detection systems. The use of these techniques on IoT nodes is limited by their low power and lossy nature, primarily due to the significant computational overhead they involve. In addition, conventional trust-management systems for addressing security concerns need to be improved due to their high computation, memory, and energy costs. Therefore, this paper presents a novel, Lightweight, and Efficient Trust-based Mechanism (LETM-IoT) for resource-limited IoT networks to mitigate Sybil attacks. We conducted extensive simulations in Cooja, the Contiki OS simulator, to assess the efficacy of the proposed LETM-IoT against three types of Sybil attack (A, B, and C). A comparison was also made with standard RPL and state-of-the-art approaches. The experimental findings show that LETM-IoT outperforms both of these in terms of average packet-delivery ratio by 0.20 percentage points, true-positive ratio by 1.34 percentage points, energy consumption by 2.5%, and memory utilization by 19.42%. The obtained results also show that LETM-IoT consumes increased storage by 5.02% compared to the standard RPL due to the existence of an embedded security module.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103576"},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570870524001872/pdfft?md5=76ec8ae4462665d30ce03fddc3ecca3b&pid=1-s2.0-S1570870524001872-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141404107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}