预测物联网中的各种QoS指标:一种用于性能平衡的自适应深度学习跨层方法

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yassin Eljakani , Abdellah Boulouz , Craig Thomson
{"title":"预测物联网中的各种QoS指标:一种用于性能平衡的自适应深度学习跨层方法","authors":"Yassin Eljakani ,&nbsp;Abdellah Boulouz ,&nbsp;Craig Thomson","doi":"10.1016/j.adhoc.2025.103769","DOIUrl":null,"url":null,"abstract":"<div><div>Wireless sensor networks (WSNs) present dynamic challenges in various environments, often requiring careful balance between conflicting Quality of Service (QoS) metrics to optimize stack parameters and enhance network performance. This paper introduces a novel approach that incorporates proposed trade-off parameters at the application layer to model the interplay between multiple QoS metrics, including Packet Delivery Ratio (PDR), signal-to-noise ratio (SNR), Maximum Goodput (MGP), and Energy Consumption (EC). Our approach utilizes a multi-layer perceptron (MLP) model optimized using a custom Bayesian algorithm. The model employs a dynamic loss function called Weighted Error Squared (WES). It adapts dynamically to QoS statistical distributions through a scaling hyperparameter, enabling it to uncover intricate patterns specific to IEEE 802.15.4 networks. Empirical results from testing our model against a public dataset are compelling; we significantly improved prediction accuracy compared to baseline models, with R-squared values of 97%, 99%, 98%, and 93% for SNR, PDR, MGP, and EC, respectively. These results demonstrate the effectiveness of our model in predicting network behavior. Additionally, this paper presents a conceptual operational design for implementing the model in diverse real-world scenarios, suggesting avenues for future practical applications. To the best of our knowledge, this is the first design of such an integrated approach in WSNs, making our model an adaptable solution for network designers aiming to achieve optimal configurations.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"170 ","pages":"Article 103769"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting diverse QoS metrics in IoT: An adaptive deep learning cross-layer approach for performance balancing\",\"authors\":\"Yassin Eljakani ,&nbsp;Abdellah Boulouz ,&nbsp;Craig Thomson\",\"doi\":\"10.1016/j.adhoc.2025.103769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wireless sensor networks (WSNs) present dynamic challenges in various environments, often requiring careful balance between conflicting Quality of Service (QoS) metrics to optimize stack parameters and enhance network performance. This paper introduces a novel approach that incorporates proposed trade-off parameters at the application layer to model the interplay between multiple QoS metrics, including Packet Delivery Ratio (PDR), signal-to-noise ratio (SNR), Maximum Goodput (MGP), and Energy Consumption (EC). Our approach utilizes a multi-layer perceptron (MLP) model optimized using a custom Bayesian algorithm. The model employs a dynamic loss function called Weighted Error Squared (WES). It adapts dynamically to QoS statistical distributions through a scaling hyperparameter, enabling it to uncover intricate patterns specific to IEEE 802.15.4 networks. Empirical results from testing our model against a public dataset are compelling; we significantly improved prediction accuracy compared to baseline models, with R-squared values of 97%, 99%, 98%, and 93% for SNR, PDR, MGP, and EC, respectively. These results demonstrate the effectiveness of our model in predicting network behavior. Additionally, this paper presents a conceptual operational design for implementing the model in diverse real-world scenarios, suggesting avenues for future practical applications. To the best of our knowledge, this is the first design of such an integrated approach in WSNs, making our model an adaptable solution for network designers aiming to achieve optimal configurations.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":\"170 \",\"pages\":\"Article 103769\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870525000174\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525000174","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(wsn)在各种环境中面临着动态挑战,通常需要在冲突的服务质量(QoS)度量之间进行仔细平衡,以优化堆栈参数并提高网络性能。本文介绍了一种新颖的方法,该方法在应用层合并了拟议的权衡参数,以模拟多个QoS指标之间的相互作用,包括分组传输比(PDR)、信噪比(SNR)、最大有效利用率(MGP)和能耗(EC)。我们的方法利用多层感知器(MLP)模型,使用自定义贝叶斯算法进行优化。该模型采用一种称为加权误差平方(WES)的动态损失函数。它通过伸缩超参数动态适应QoS统计分布,使其能够揭示特定于IEEE 802.15.4网络的复杂模式。针对公共数据集测试我们的模型的实证结果令人信服;与基线模型相比,我们显著提高了预测精度,SNR、PDR、MGP和EC的r平方值分别为97%、99%、98%和93%。这些结果证明了我们的模型在预测网络行为方面的有效性。此外,本文提出了在不同的现实世界场景中实现该模型的概念操作设计,为未来的实际应用提供了途径。据我们所知,这是wsn中这种集成方法的首次设计,使我们的模型成为网络设计者旨在实现最佳配置的适应性解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting diverse QoS metrics in IoT: An adaptive deep learning cross-layer approach for performance balancing
Wireless sensor networks (WSNs) present dynamic challenges in various environments, often requiring careful balance between conflicting Quality of Service (QoS) metrics to optimize stack parameters and enhance network performance. This paper introduces a novel approach that incorporates proposed trade-off parameters at the application layer to model the interplay between multiple QoS metrics, including Packet Delivery Ratio (PDR), signal-to-noise ratio (SNR), Maximum Goodput (MGP), and Energy Consumption (EC). Our approach utilizes a multi-layer perceptron (MLP) model optimized using a custom Bayesian algorithm. The model employs a dynamic loss function called Weighted Error Squared (WES). It adapts dynamically to QoS statistical distributions through a scaling hyperparameter, enabling it to uncover intricate patterns specific to IEEE 802.15.4 networks. Empirical results from testing our model against a public dataset are compelling; we significantly improved prediction accuracy compared to baseline models, with R-squared values of 97%, 99%, 98%, and 93% for SNR, PDR, MGP, and EC, respectively. These results demonstrate the effectiveness of our model in predicting network behavior. Additionally, this paper presents a conceptual operational design for implementing the model in diverse real-world scenarios, suggesting avenues for future practical applications. To the best of our knowledge, this is the first design of such an integrated approach in WSNs, making our model an adaptable solution for network designers aiming to achieve optimal configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信