基于决策树的强化学习的物联网应用的计算卸载和资源分配

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Guneet Kaur Walia, Mohit Kumar
{"title":"基于决策树的强化学习的物联网应用的计算卸载和资源分配","authors":"Guneet Kaur Walia,&nbsp;Mohit Kumar","doi":"10.1016/j.adhoc.2024.103751","DOIUrl":null,"url":null,"abstract":"<div><div>The pervasive penetration of IoT devices in various domains such as autonomous vehicles, supply chain management, video surveillance, healthcare, industrial automation etc. necessitates for advanced computing paradigms to achieve real time response delivery. Edge computing offers prompt service response via its competent decentralized platform for catering disseminate workload, hence serving as front-runner for competently handling a wide spectrum of IoT applications. However, optimal distribution of workload in the form of incoming tasks to appropriate destinations remains a challenging issue due to multiple factors such as dynamic offloading decision, optimal resource allocation, heterogeneity of devices, unbalanced workload etc in collaborative Cloud-Edge layered architecture. Employing advanced Artificial Intelligence (AI)-based techniques, provides promising solutions to address the complex task assignment problem. However, existing solutions encounter significant challenges, including prolonged convergence time, extended learning periods for agents and inability to adapt to a stochastic environment. Hence, our work aims to design a unified framework for performing computational offloading and resource allocation in diverse IoT applications using Decision Tree Empowered Reinforcement Learning (DTRL) technique. The proposed work formulates the optimization problem for offloading decisions at runtime and allocates the optimal resources for incoming tasks to improve the Quality-of-Service parameters (QoS). The computational results conducted over a simulation environment proved that the proposed approach has the high convergence ability, exploration and exploitation capability and outperforms the existing state-of-the-art approaches in terms of delay, energy consumption, waiting time, task acceptance ratio and service cost.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"170 ","pages":"Article 103751"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Offloading and Resource Allocation for IoT applications using Decision Tree based Reinforcement Learning\",\"authors\":\"Guneet Kaur Walia,&nbsp;Mohit Kumar\",\"doi\":\"10.1016/j.adhoc.2024.103751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pervasive penetration of IoT devices in various domains such as autonomous vehicles, supply chain management, video surveillance, healthcare, industrial automation etc. necessitates for advanced computing paradigms to achieve real time response delivery. Edge computing offers prompt service response via its competent decentralized platform for catering disseminate workload, hence serving as front-runner for competently handling a wide spectrum of IoT applications. However, optimal distribution of workload in the form of incoming tasks to appropriate destinations remains a challenging issue due to multiple factors such as dynamic offloading decision, optimal resource allocation, heterogeneity of devices, unbalanced workload etc in collaborative Cloud-Edge layered architecture. Employing advanced Artificial Intelligence (AI)-based techniques, provides promising solutions to address the complex task assignment problem. However, existing solutions encounter significant challenges, including prolonged convergence time, extended learning periods for agents and inability to adapt to a stochastic environment. Hence, our work aims to design a unified framework for performing computational offloading and resource allocation in diverse IoT applications using Decision Tree Empowered Reinforcement Learning (DTRL) technique. The proposed work formulates the optimization problem for offloading decisions at runtime and allocates the optimal resources for incoming tasks to improve the Quality-of-Service parameters (QoS). The computational results conducted over a simulation environment proved that the proposed approach has the high convergence ability, exploration and exploitation capability and outperforms the existing state-of-the-art approaches in terms of delay, energy consumption, waiting time, task acceptance ratio and service cost.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":\"170 \",\"pages\":\"Article 103751\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524003627\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524003627","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网设备在自动驾驶汽车、供应链管理、视频监控、医疗保健、工业自动化等各个领域的普遍渗透,需要先进的计算范式来实现实时响应交付。边缘计算通过其胜任的分散平台提供快速的服务响应,以满足分散的工作量,因此在胜任处理广泛的物联网应用方面处于领先地位。然而,在协作云边缘分层架构中,由于动态卸载决策、最优资源分配、设备异构、工作负载不平衡等多种因素的影响,以传入任务的形式将工作负载优化分配到适当的目的地仍然是一个具有挑战性的问题。采用先进的基于人工智能(AI)的技术,为解决复杂的任务分配问题提供了有希望的解决方案。然而,现有的解决方案遇到了重大的挑战,包括较长的收敛时间,智能体的学习周期延长以及无法适应随机环境。因此,我们的工作旨在设计一个统一的框架,用于使用决策树授权强化学习(DTRL)技术在各种物联网应用中执行计算卸载和资源分配。提出了在运行时卸载决策的优化问题,并为传入任务分配最优资源,以提高服务质量参数。仿真环境下的计算结果表明,该方法具有较高的收敛能力和探索开发能力,在时延、能耗、等待时间、任务接受率和服务成本等方面均优于现有的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Offloading and Resource Allocation for IoT applications using Decision Tree based Reinforcement Learning
The pervasive penetration of IoT devices in various domains such as autonomous vehicles, supply chain management, video surveillance, healthcare, industrial automation etc. necessitates for advanced computing paradigms to achieve real time response delivery. Edge computing offers prompt service response via its competent decentralized platform for catering disseminate workload, hence serving as front-runner for competently handling a wide spectrum of IoT applications. However, optimal distribution of workload in the form of incoming tasks to appropriate destinations remains a challenging issue due to multiple factors such as dynamic offloading decision, optimal resource allocation, heterogeneity of devices, unbalanced workload etc in collaborative Cloud-Edge layered architecture. Employing advanced Artificial Intelligence (AI)-based techniques, provides promising solutions to address the complex task assignment problem. However, existing solutions encounter significant challenges, including prolonged convergence time, extended learning periods for agents and inability to adapt to a stochastic environment. Hence, our work aims to design a unified framework for performing computational offloading and resource allocation in diverse IoT applications using Decision Tree Empowered Reinforcement Learning (DTRL) technique. The proposed work formulates the optimization problem for offloading decisions at runtime and allocates the optimal resources for incoming tasks to improve the Quality-of-Service parameters (QoS). The computational results conducted over a simulation environment proved that the proposed approach has the high convergence ability, exploration and exploitation capability and outperforms the existing state-of-the-art approaches in terms of delay, energy consumption, waiting time, task acceptance ratio and service cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信