Analysis Mathematica最新文献

筛选
英文 中文
The semicentennial anniversary of Analysis Mathematica 数学分析》半百周年纪念
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-12-09 DOI: 10.1007/s10476-024-00062-5
Szilárd Gy. Révész, Bálint Farkas, Vladimir D. Stepanov, Zoltán Németh, Béla Nagy
{"title":"The semicentennial anniversary of Analysis Mathematica","authors":"Szilárd Gy. Révész, Bálint Farkas, Vladimir D. Stepanov, Zoltán Németh, Béla Nagy","doi":"10.1007/s10476-024-00062-5","DOIUrl":"10.1007/s10476-024-00062-5","url":null,"abstract":"","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"959 - 965"},"PeriodicalIF":0.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A graph without zero in its spectra 谱中没有零的图
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-11-22 DOI: 10.1007/s10476-024-00056-3
C. Anné, H. Ayadi, M. Balti, N. Torki-Hamza
{"title":"A graph without zero in its spectra","authors":"C. Anné,&nbsp;H. Ayadi,&nbsp;M. Balti,&nbsp;N. Torki-Hamza","doi":"10.1007/s10476-024-00056-3","DOIUrl":"10.1007/s10476-024-00056-3","url":null,"abstract":"<div><p>In this paper we consider the discrete Laplacian acting on\u00001-forms and we study its spectrum relative to the spectrum of the 0-form Laplacian.\u0000We show that the nonzero spectrum can coincide for these Laplacians with\u0000the same nature. We examine the characteristics of 0-spectrum of the 1-form\u0000Laplacian compared to the cycles of graphs. </p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"987 - 1008"},"PeriodicalIF":0.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On general and random Dirichlet series and their partial sums 一般和随机狄利克雷级数及其部分和
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-11-14 DOI: 10.1007/s10476-024-00059-0
S. Konyagin, H. Queffélec
{"title":"On general and random Dirichlet series and their partial sums","authors":"S. Konyagin,&nbsp;H. Queffélec","doi":"10.1007/s10476-024-00059-0","DOIUrl":"10.1007/s10476-024-00059-0","url":null,"abstract":"<div><p>We consider random Dirichlet series <span>(f(s)=sum_{n=1}^{infty} varepsilon_n a_n e^{-lambda_{n} s})</span>, with <span>(a_n)</span> complex numbers, <span>(lambda_n geq 0)</span>, increasing to <span>(infty)</span> , and otherwise arbitrary; and with <span>((varepsilon_n))</span> a Rademacher sequence of random variables. We study their almost sure convergence on the critical line of convergence\u0000<span>({ text{Re},, s=sigma_{c}(f)}.)</span>\u0000When <span>(lambda_n=n)</span> (periodic case), a well-known sufficient condition on the coefficients <i>a</i><sub><i>n</i></sub> ensuring almost sure uniform convergence on <span>([0,2pi] )</span> (equivalently uniform convergence on <span>(mathbb{R})</span>) has been given by Salem and Zygmund, who made strong use of Bernstein's inequality. When <span>((lambda_n))</span> is arbitrary (non-periodic case), one must distinguish between uniform convergence on compact subsets of <span>(mathbb{R})</span> (local convergence) and uniform convergence on <span>(mathbb{R})</span>. We extend Salem–Zygmund's theorem to general random Dirichlet series in this non-periodic case. Our main tools are a simple “local” Bernstein's inequality, and P. Lévy's symmetry principle.\u0000</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"1099 - 1109"},"PeriodicalIF":0.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Martingale Hardy Orlicz–Lorentz–Karamata spaces and applications in Fourier analysis 鞅Hardy Orlicz-Lorentz-Karamata空间及其在傅里叶分析中的应用
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-11-04 DOI: 10.1007/s10476-024-00057-2
Z. Hao, F. Weisz
{"title":"Martingale Hardy Orlicz–Lorentz–Karamata spaces and applications in Fourier analysis","authors":"Z. Hao,&nbsp;F. Weisz","doi":"10.1007/s10476-024-00057-2","DOIUrl":"10.1007/s10476-024-00057-2","url":null,"abstract":"<div><p> We summarize some results as well as we prove some new results about the Orlicz–Lorentz–Karamata spaces and martingale Hardy Orlicz–Lorentz–Karamata spaces. More precisely, Doob's maximal inequality for submartingales and Burkholder–Davis–Gundy inequality are presented. We also show some fundamental martingale inequalities and modular inequalities. Additionally, based on atomic decompositions, duality theorems and fractional integral operators are discussed. As applications in Fourier analysis, we consider the Walsh–Fourier series on Orlicz–Lorentz–Karamata spaces. The dyadic maximal operators on martingale Hardy Orlicz–Lorentz–Karamata spaces are presented. The boundedness of maximal Fejér operator is proved, which further implies some convergence results of the Fejér means.\u0000</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"1045 - 1071"},"PeriodicalIF":0.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-024-00057-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of function's supports under arithmetic constraints 算法约束下函数支持度的估计
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-10-29 DOI: 10.1007/s10476-024-00058-1
N. Hegyvári
{"title":"Estimation of function's supports under arithmetic constraints","authors":"N. Hegyvári","doi":"10.1007/s10476-024-00058-1","DOIUrl":"10.1007/s10476-024-00058-1","url":null,"abstract":"<div><p>The well-known inequality <span>(lvert {rm supp}(f) rvert lvert {rm supp}( widehat f) rvert geq |G|)</span> gives a lower estimation for each support. In this paper we consider the case where there exists a slowly increasing function <span>(F)</span> such that <span>(lvert {rm supp}(f) rvert leq F(lvert {rm supp}( widehat f) rvert ))</span>. We will show that this can be done under some arithmetic constraint.\u0000The two links that help us come from additive combinatorics and theoretical computer science. The first is the additive energy which plays a central role in additive combinatorics. The second is the influence of Boolean functions. Our main tool is the spectral analysis of Boolean functions. We prove an uncertainty inequality in which the influence of a function and its Fourier spectrum play a role.\u0000</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"1073 - 1079"},"PeriodicalIF":0.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-024-00058-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the estimate (M(x)=o(x)) for Beurling generalized numbers 关于Beurling广义数的估计(M(x)=o(x))
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-10-29 DOI: 10.1007/s10476-024-00061-6
J. Vindas
{"title":"On the estimate (M(x)=o(x)) for Beurling generalized numbers","authors":"J. Vindas","doi":"10.1007/s10476-024-00061-6","DOIUrl":"10.1007/s10476-024-00061-6","url":null,"abstract":"<div><p>We show that the sum function of the Möbius function of a Beurling number system must satisfy the asymptotic bound <span>(M(x)=o(x))</span> if it satisfies the prime number theorem and its prime distribution function arises from a monotone perturbation of either the classical prime numbers or the logarithmic integral.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"1131 - 1140"},"PeriodicalIF":0.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On quasiconformal dimension distortion for subsets of the real line 实线子集的拟共形维畸变
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-10-29 DOI: 10.1007/s10476-024-00060-7
P. Nissinen, I. Prause
{"title":"On quasiconformal dimension distortion for subsets of the real line","authors":"P. Nissinen,&nbsp;I. Prause","doi":"10.1007/s10476-024-00060-7","DOIUrl":"10.1007/s10476-024-00060-7","url":null,"abstract":"<div><p>Optimal quasiconformal dimension distortions bounds for subsets\u0000of the complex plane have been established by Astala. We show that these\u0000estimates can be improved when one considers subsets of the real line of arbitrary\u0000Hausdorff dimension. We present some explicit numerical bounds.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"1111 - 1129"},"PeriodicalIF":0.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-024-00060-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finiteness property and the periodicity of meromorphic functions
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-10-17 DOI: 10.1007/s10476-024-00042-9
S.-X. Mei, W.-Q. Shen, J. Wang, X. Yao
{"title":"Finiteness property and the periodicity of meromorphic functions","authors":"S.-X. Mei,&nbsp;W.-Q. Shen,&nbsp;J. Wang,&nbsp;X. Yao","doi":"10.1007/s10476-024-00042-9","DOIUrl":"10.1007/s10476-024-00042-9","url":null,"abstract":"<div><p>In this paper we connect the finiteness property and the periodicity\u0000in the study of the generalized Yang’s conjecture and its variations, which\u0000involve the inverse question of whether <i>f(z)</i> is still periodic when some differential\u0000polynomial in <i>f</i> is periodic. The finiteness property can be dated back to\u0000Weierstrass in the characterization of addition law for meromorphic functions. To\u0000the best of our knowledge, it seems the first time that the finiteness property is\u0000used to investigate generalized Yang’s conjecture, which gives a partial affirmative\u0000answer for the meromorphic functions with at least one pole.\u0000</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 1","pages":"269 - 277"},"PeriodicalIF":0.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An inequality for eigenvalues of nuclear operators via traces and the generalized Hoffman–Wielandt theorem 核算子经迹特征值的一个不等式及广义霍夫曼-维兰特定理
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-10-17 DOI: 10.1007/s10476-024-00040-x
M. Gil’
{"title":"An inequality for eigenvalues of nuclear operators via traces and the generalized Hoffman–Wielandt theorem","authors":"M. Gil’","doi":"10.1007/s10476-024-00040-x","DOIUrl":"10.1007/s10476-024-00040-x","url":null,"abstract":"<div><p>Let <span>(A)</span> be a Hilbert-Schmidt operator, \u0000whose eigenvalues are <span>(lambda_k(A)(k=1,2 , ldots ))</span>.\u0000We derive\u0000a new inequality for the series \u0000<span>(sum^{infty}_{k=1}|lambda_k(A)-z_k|^2)</span>, \u0000where <span>({z_k})</span> is a sequence of numbers\u0000satisfying the condition\u0000<span>(sum_k |z_k|^2&lt;{infty})</span>. That inequality is expressed\u0000via the self-commutator <span>(AA^*-A^*A)</span>. \u0000If <span>(A)</span> is a nuclear operator, we \u0000obtain an inequality for the eigenvalues via the \u0000trace and self-commutator.</p><p>\u0000Our results are based on the generalization of the theorem of R. Bhatia and\u0000L. Elsner [1] which is an infinite-dimensional analog of the Hoffman–Wielandt\u0000theorem on perturbations of normal matrices.\u0000</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"50 4","pages":"1033 - 1043"},"PeriodicalIF":0.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connected Hamel bases in Hilbert spaces
IF 0.6 3区 数学
Analysis Mathematica Pub Date : 2024-10-17 DOI: 10.1007/s10476-024-00055-4
G. Kuba
{"title":"Connected Hamel bases in Hilbert spaces","authors":"G. Kuba","doi":"10.1007/s10476-024-00055-4","DOIUrl":"10.1007/s10476-024-00055-4","url":null,"abstract":"<div><p>Our main goal is to track down an algebraic basis of Hilbert space <span>( ell^2)</span> which is a connected and locally connected subset of the unit sphere.\u0000</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 1","pages":"249 - 253"},"PeriodicalIF":0.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信