某些量子群代数的弱紧乘子

IF 0.5 3区 数学 Q3 MATHEMATICS
M. Nemati, R. Esmailvandi, A. Ebrahimzadeh Esfahani
{"title":"某些量子群代数的弱紧乘子","authors":"M. Nemati,&nbsp;R. Esmailvandi,&nbsp;A. Ebrahimzadeh Esfahani","doi":"10.1007/s10476-025-00076-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb{G}\\)</span> be a locally compact quantum group. We study the\nexistence of certain (weakly) compact right and left multipliers of the Banach al-\ngebra <span>\\(\\mathfrak{X} ^{*} \\)</span>, where <span>\\(\\mathfrak{X} \\)</span> is an introverted subspace of <span>\\(L^\\infty(\\mathbb{G})\\)</span> with some conditions, and\nrelate them with some properties of <span>\\(\\mathbb{G}\\)</span> such as compactness and amenability. For\nexample, when <span>\\(\\mathbb{G}\\)</span> is co-amenable and <span>\\(L^1(\\mathbb{G})\\)</span> is semisimple we give a characteri-\nzation for compactness of <span>\\(\\mathbb{G}\\)</span> in terms of the existence of a nonzero compact right\nmultiplier on <span>\\(\\mathfrak{X} ^{*} \\)</span>. Using this, for a locally compact group <span>\\({\\mathcal G}\\)</span> we prove that <span>\\(\\mathbb{G}_a\\)</span> is\ncompact if and only if there is a nonzero (weakly) compact right multiplier on <span>\\(\\mathfrak{X} ^{*} \\)</span>.\nSimilar assertion holds for <span>\\(\\mathbb{G}_s\\)</span> when <span>\\({\\mathcal G}\\)</span> is amenable.\n</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 2","pages":"587 - 603"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly compact multipliers for some quantum group algebras\",\"authors\":\"M. Nemati,&nbsp;R. Esmailvandi,&nbsp;A. Ebrahimzadeh Esfahani\",\"doi\":\"10.1007/s10476-025-00076-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathbb{G}\\\\)</span> be a locally compact quantum group. We study the\\nexistence of certain (weakly) compact right and left multipliers of the Banach al-\\ngebra <span>\\\\(\\\\mathfrak{X} ^{*} \\\\)</span>, where <span>\\\\(\\\\mathfrak{X} \\\\)</span> is an introverted subspace of <span>\\\\(L^\\\\infty(\\\\mathbb{G})\\\\)</span> with some conditions, and\\nrelate them with some properties of <span>\\\\(\\\\mathbb{G}\\\\)</span> such as compactness and amenability. For\\nexample, when <span>\\\\(\\\\mathbb{G}\\\\)</span> is co-amenable and <span>\\\\(L^1(\\\\mathbb{G})\\\\)</span> is semisimple we give a characteri-\\nzation for compactness of <span>\\\\(\\\\mathbb{G}\\\\)</span> in terms of the existence of a nonzero compact right\\nmultiplier on <span>\\\\(\\\\mathfrak{X} ^{*} \\\\)</span>. Using this, for a locally compact group <span>\\\\({\\\\mathcal G}\\\\)</span> we prove that <span>\\\\(\\\\mathbb{G}_a\\\\)</span> is\\ncompact if and only if there is a nonzero (weakly) compact right multiplier on <span>\\\\(\\\\mathfrak{X} ^{*} \\\\)</span>.\\nSimilar assertion holds for <span>\\\\(\\\\mathbb{G}_s\\\\)</span> when <span>\\\\({\\\\mathcal G}\\\\)</span> is amenable.\\n</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"51 2\",\"pages\":\"587 - 603\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-025-00076-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-025-00076-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(\mathbb{G}\)为局部紧化量子群。本文研究了Banach al-gebra \(\mathfrak{X} ^{*} \)中若干(弱)紧右乘子和左乘子的存在性,其中\(\mathfrak{X} \)是\(L^\infty(\mathbb{G})\)的一个具有一定条件的内向子空间,并将它们与\(\mathbb{G}\)的紧性和可调性等性质联系起来。例如,当\(\mathbb{G}\)是可协调的并且\(L^1(\mathbb{G})\)是半简单的时候,我们根据\(\mathfrak{X} ^{*} \)上的非零紧右乘子的存在性给出了\(\mathbb{G}\)紧性的一个表征。利用这一点,我们证明了对于一个局部紧群\({\mathcal G}\),当且仅当\(\mathfrak{X} ^{*} \)上存在一个非零(弱)紧右乘子时,\(\mathbb{G}_a\)是紧的。当\({\mathcal G}\)适用时,类似的断言也适用于\(\mathbb{G}_s\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly compact multipliers for some quantum group algebras

Let \(\mathbb{G}\) be a locally compact quantum group. We study the existence of certain (weakly) compact right and left multipliers of the Banach al- gebra \(\mathfrak{X} ^{*} \), where \(\mathfrak{X} \) is an introverted subspace of \(L^\infty(\mathbb{G})\) with some conditions, and relate them with some properties of \(\mathbb{G}\) such as compactness and amenability. For example, when \(\mathbb{G}\) is co-amenable and \(L^1(\mathbb{G})\) is semisimple we give a characteri- zation for compactness of \(\mathbb{G}\) in terms of the existence of a nonzero compact right multiplier on \(\mathfrak{X} ^{*} \). Using this, for a locally compact group \({\mathcal G}\) we prove that \(\mathbb{G}_a\) is compact if and only if there is a nonzero (weakly) compact right multiplier on \(\mathfrak{X} ^{*} \). Similar assertion holds for \(\mathbb{G}_s\) when \({\mathcal G}\) is amenable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信