Monotonicity properties of classical functions and their q-analogues

IF 0.5 3区 数学 Q3 MATHEMATICS
M. Bouali
{"title":"Monotonicity properties of classical functions and their q-analogues","authors":"M. Bouali","doi":"10.1007/s10476-025-00084-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove some new results and unify old ones on the complete monotonicity of functions including the gamma and digamma functions and their <i>q</i>-analogues. All of these results lead to new and interesting inequalities. Of particular interest, we obtain the following results:\nfor all <span>\\(q&gt;0\\)</span>, <span>\\(q\\neq 1\\)</span>, <span>\\(x&gt;0\\)</span> and <span>\\(n\\in \\mathbb{N}\\)</span>, we have\n</p><div><div><span>$$\\begin{aligned}\\log\\big(\\frac{1-q^x}{1-q}\\big)- \\frac14\\frac{3q^x+1}{q^x-1}\\log q\\leq\\psi_q(x)\n\\leq\\log\\big(\\frac{1-q^x}{1-q}\\big)-\\frac{1}2 \\frac{q^x}{q^x-1}\\log q, \n\\q^x\\big(\\frac{\\log q}{q^x-1}\\big)^nP_{n-2}(q^x)+\\frac12q^x\\big(\\frac{\\log q}{q^x-1}\\big)^{n+1}P_{n-1}(q^x)\\leq(-1)^{n+1}\\psi^{(n)}_q(x)\n\\ \\le q^x\\big(\\frac{\\log q}{q^x-1}\\big)^nP_{n-2}(q^x)+q^x\\big(\\frac{\\log q}{q^x-1}\\big)^{n+1}P_{n-1}(q^x).\\end{aligned}$$</span></div></div><p>\nwhere <span>\\(P_n(x)\\)</span> is some polynomial of degree <i>n</i> to be defined later.</p><p>These inequalities are the <i>q</i>-analogues of the classical inequalities\n</p><div><div><span>$$\\frac1{2x}\\leq\\log x-\\psi(x)\\leq\\frac1{x},$$</span></div></div><p>\nand\n</p><div><div><span>$$\\frac{(n-1)!}{x^{n}}+\\frac{n!}{2x^{n+1}}\\leq (-1)^{n+1}\\psi^{(n)}(x)\\leq\\frac{(n-1)!}{x^{n}}+\\frac{n!}{x^{n+1}},\\quad \nn\\geq1, \\ x&gt;0.$$</span></div></div></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 2","pages":"389 - 422"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-025-00084-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove some new results and unify old ones on the complete monotonicity of functions including the gamma and digamma functions and their q-analogues. All of these results lead to new and interesting inequalities. Of particular interest, we obtain the following results: for all \(q>0\), \(q\neq 1\), \(x>0\) and \(n\in \mathbb{N}\), we have

$$\begin{aligned}\log\big(\frac{1-q^x}{1-q}\big)- \frac14\frac{3q^x+1}{q^x-1}\log q\leq\psi_q(x) \leq\log\big(\frac{1-q^x}{1-q}\big)-\frac{1}2 \frac{q^x}{q^x-1}\log q, \q^x\big(\frac{\log q}{q^x-1}\big)^nP_{n-2}(q^x)+\frac12q^x\big(\frac{\log q}{q^x-1}\big)^{n+1}P_{n-1}(q^x)\leq(-1)^{n+1}\psi^{(n)}_q(x) \ \le q^x\big(\frac{\log q}{q^x-1}\big)^nP_{n-2}(q^x)+q^x\big(\frac{\log q}{q^x-1}\big)^{n+1}P_{n-1}(q^x).\end{aligned}$$

where \(P_n(x)\) is some polynomial of degree n to be defined later.

These inequalities are the q-analogues of the classical inequalities

$$\frac1{2x}\leq\log x-\psi(x)\leq\frac1{x},$$

and

$$\frac{(n-1)!}{x^{n}}+\frac{n!}{2x^{n+1}}\leq (-1)^{n+1}\psi^{(n)}(x)\leq\frac{(n-1)!}{x^{n}}+\frac{n!}{x^{n+1}},\quad n\geq1, \ x>0.$$
经典函数及其q-类似函数的单调性
我们证明了关于函数的完全单调性的一些新结果,并统一了旧结果,包括函数和二函数及其q-类似函数。所有这些结果导致了新的和有趣的不等式。特别有趣的是,我们得到以下结果:对于所有\(q>0\), \(q\neq 1\), \(x>0\)和\(n\in \mathbb{N}\),我们有$$\begin{aligned}\log\big(\frac{1-q^x}{1-q}\big)- \frac14\frac{3q^x+1}{q^x-1}\log q\leq\psi_q(x)\leq\log\big(\frac{1-q^x}{1-q}\big)-\frac{1}2 \frac{q^x}{q^x-1}\log q, \q^x\big(\frac{\log q}{q^x-1}\big)^nP_{n-2}(q^x)+\frac12q^x\big(\frac{\log q}{q^x-1}\big)^{n+1}P_{n-1}(q^x)\leq(-1)^{n+1}\psi^{(n)}_q(x)\ \le q^x\big(\frac{\log q}{q^x-1}\big)^nP_{n-2}(q^x)+q^x\big(\frac{\log q}{q^x-1}\big)^{n+1}P_{n-1}(q^x).\end{aligned}$$,其中\(P_n(x)\)是稍后定义的某个n次多项式。这些不等式是经典不等式$$\frac1{2x}\leq\log x-\psi(x)\leq\frac1{x},$$和$$\frac{(n-1)!}{x^{n}}+\frac{n!}{2x^{n+1}}\leq (-1)^{n+1}\psi^{(n)}(x)\leq\frac{(n-1)!}{x^{n}}+\frac{n!}{x^{n+1}},\quad n\geq1, \ x>0.$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信