{"title":"经典函数及其q-类似函数的单调性","authors":"M. Bouali","doi":"10.1007/s10476-025-00084-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove some new results and unify old ones on the complete monotonicity of functions including the gamma and digamma functions and their <i>q</i>-analogues. All of these results lead to new and interesting inequalities. Of particular interest, we obtain the following results:\nfor all <span>\\(q>0\\)</span>, <span>\\(q\\neq 1\\)</span>, <span>\\(x>0\\)</span> and <span>\\(n\\in \\mathbb{N}\\)</span>, we have\n</p><div><div><span>$$\\begin{aligned}\\log\\big(\\frac{1-q^x}{1-q}\\big)- \\frac14\\frac{3q^x+1}{q^x-1}\\log q\\leq\\psi_q(x)\n\\leq\\log\\big(\\frac{1-q^x}{1-q}\\big)-\\frac{1}2 \\frac{q^x}{q^x-1}\\log q, \n\\q^x\\big(\\frac{\\log q}{q^x-1}\\big)^nP_{n-2}(q^x)+\\frac12q^x\\big(\\frac{\\log q}{q^x-1}\\big)^{n+1}P_{n-1}(q^x)\\leq(-1)^{n+1}\\psi^{(n)}_q(x)\n\\ \\le q^x\\big(\\frac{\\log q}{q^x-1}\\big)^nP_{n-2}(q^x)+q^x\\big(\\frac{\\log q}{q^x-1}\\big)^{n+1}P_{n-1}(q^x).\\end{aligned}$$</span></div></div><p>\nwhere <span>\\(P_n(x)\\)</span> is some polynomial of degree <i>n</i> to be defined later.</p><p>These inequalities are the <i>q</i>-analogues of the classical inequalities\n</p><div><div><span>$$\\frac1{2x}\\leq\\log x-\\psi(x)\\leq\\frac1{x},$$</span></div></div><p>\nand\n</p><div><div><span>$$\\frac{(n-1)!}{x^{n}}+\\frac{n!}{2x^{n+1}}\\leq (-1)^{n+1}\\psi^{(n)}(x)\\leq\\frac{(n-1)!}{x^{n}}+\\frac{n!}{x^{n+1}},\\quad \nn\\geq1, \\ x>0.$$</span></div></div></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 2","pages":"389 - 422"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity properties of classical functions and their q-analogues\",\"authors\":\"M. Bouali\",\"doi\":\"10.1007/s10476-025-00084-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove some new results and unify old ones on the complete monotonicity of functions including the gamma and digamma functions and their <i>q</i>-analogues. All of these results lead to new and interesting inequalities. Of particular interest, we obtain the following results:\\nfor all <span>\\\\(q>0\\\\)</span>, <span>\\\\(q\\\\neq 1\\\\)</span>, <span>\\\\(x>0\\\\)</span> and <span>\\\\(n\\\\in \\\\mathbb{N}\\\\)</span>, we have\\n</p><div><div><span>$$\\\\begin{aligned}\\\\log\\\\big(\\\\frac{1-q^x}{1-q}\\\\big)- \\\\frac14\\\\frac{3q^x+1}{q^x-1}\\\\log q\\\\leq\\\\psi_q(x)\\n\\\\leq\\\\log\\\\big(\\\\frac{1-q^x}{1-q}\\\\big)-\\\\frac{1}2 \\\\frac{q^x}{q^x-1}\\\\log q, \\n\\\\q^x\\\\big(\\\\frac{\\\\log q}{q^x-1}\\\\big)^nP_{n-2}(q^x)+\\\\frac12q^x\\\\big(\\\\frac{\\\\log q}{q^x-1}\\\\big)^{n+1}P_{n-1}(q^x)\\\\leq(-1)^{n+1}\\\\psi^{(n)}_q(x)\\n\\\\ \\\\le q^x\\\\big(\\\\frac{\\\\log q}{q^x-1}\\\\big)^nP_{n-2}(q^x)+q^x\\\\big(\\\\frac{\\\\log q}{q^x-1}\\\\big)^{n+1}P_{n-1}(q^x).\\\\end{aligned}$$</span></div></div><p>\\nwhere <span>\\\\(P_n(x)\\\\)</span> is some polynomial of degree <i>n</i> to be defined later.</p><p>These inequalities are the <i>q</i>-analogues of the classical inequalities\\n</p><div><div><span>$$\\\\frac1{2x}\\\\leq\\\\log x-\\\\psi(x)\\\\leq\\\\frac1{x},$$</span></div></div><p>\\nand\\n</p><div><div><span>$$\\\\frac{(n-1)!}{x^{n}}+\\\\frac{n!}{2x^{n+1}}\\\\leq (-1)^{n+1}\\\\psi^{(n)}(x)\\\\leq\\\\frac{(n-1)!}{x^{n}}+\\\\frac{n!}{x^{n+1}},\\\\quad \\nn\\\\geq1, \\\\ x>0.$$</span></div></div></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"51 2\",\"pages\":\"389 - 422\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-025-00084-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-025-00084-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Monotonicity properties of classical functions and their q-analogues
We prove some new results and unify old ones on the complete monotonicity of functions including the gamma and digamma functions and their q-analogues. All of these results lead to new and interesting inequalities. Of particular interest, we obtain the following results:
for all \(q>0\), \(q\neq 1\), \(x>0\) and \(n\in \mathbb{N}\), we have
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.